On products of nuclear operators

Oleg Reinov
Saint-Petersburg State University, Russia

Let $0<s \leqslant 1$. An operator $T: X \rightarrow Y$ in Banach spaces is called s-nuclear (nuclear if $s=1$) if it admits a representation of the kind $T x=$ $\sum_{k=1}^{\infty}\left\langle x_{k}^{\prime}, x\right\rangle y_{k}$ for $x \in X$, where $\left(x_{k}^{\prime}\right) \subset X^{*},\left(y_{k}\right) \subset Y, \sum_{k}\left\|x_{k}^{\prime}\right\|^{s}\left\|y_{k}\right\|^{s}<$ ∞. We use the notation $N_{s}(X, Y)$ for the linear space of such operators. We denote by $S_{p}(0<p<\infty)$ the von Neumann-Schatten class of operators in Hilbert spaces.

We say that an operator T can be factored through an operator from S_{p}, if there exist a Hilbert space H and the operators $A \in L(X, H), U \in S_{p}(H)$ and $B \in L(H, Y)$, such that $T=B U A$.

The following result was inspired by a question of B. S. Mityagin: Is it true that a product of two nuclear operators can be factored through an operator from S_{1} ?

Theorem. If X_{1}, \ldots, X_{n+1} are Banach spaces, $s_{k} \in(0,1]$ and $T_{k} \in$ $N_{s_{k}}\left(X_{k}, X_{k+1}\right)$ for $k=1,2, \ldots, n$, then the product $T:=T_{n} T_{n-1} \cdots T_{1}$ can be factored through an operator from S_{r}, where $1 / r=1 / s_{1}+1 / s_{2}+\cdots+$ $1 / s_{n}-(n+1) / 2$.

We will discuss the sharpness of this result. For example, we have:

1) If an operator T in a Banach space is nuclear and $m>1$, then T^{m} can be factored through an operator from S_{r}, where $r=2 /(m-1)$.
2) There exists a nuclear operator T in the space $C[0,1]$ (or in the space $\left.L_{1}[0,1]\right)$ such that for any $m>1$ and $r<2 /(m-1)$ the operator T^{m} can not be factored through an operator from S_{r}.
