Some problems in harmonic analysis on compact zero-dimensional groups (non-abelian case)

Valentin Skvortsov

Moscow State University, Russia

Here we extend some of our previous results obtained in [?] and [?] to the case of non-abelian groups.

Let G be a compact, 0-dimensional, metric group, not necessarily abelian, and let $\{G_n\}$ be a strictly decreasing sequence of open normal subgroups forming a neighborhood base at the identity. Let Σ denote the dual object of G, i. e., the set of equivalence classes of irreducible representations of G. If $\sigma \in \Sigma$, we pick a irreducible representation U^{σ} in the equivalence class σ . Let the representation U^{σ} act on the Hilbert space H^{σ} of the dimension d_{σ} . Note that all H^{σ} are of a finite dimension in our compact case. Annihilators of subgroups G_n in Σ are defined as $A_n = A(\Sigma, G_n) = (\sigma \in \Sigma : U_x^{\sigma} = I \text{ for all } x \in G_n).$

For any additive complex measure μ on G and for any $\sigma \in \Sigma$ there exists a unique operator T_{σ} on H^{σ} such that $\langle T_{\sigma}\xi,\eta\rangle = \int_{G} \langle U_{x^{-1}}^{\sigma}\xi,\eta\rangle d\mu(x)$ for every $\xi,\eta \in H^{\sigma}$ (see [?]). Fourier-Stieltjes series of a measure μ is defined as

$$\sum_{\sigma \in \Sigma} d_{\sigma} \operatorname{tr}(T_{\sigma} U_x^{\sigma})$$

(here and below $tr(\cdot)$ denotes the trace of an operator).

We say that a formal series

$$S \sim \sum_{\sigma \in \Sigma} d_{\sigma} \operatorname{tr}(B_{\sigma} U_x^{\sigma}), \tag{1}$$

where B_{σ} are bounded linear operators on H^{σ} , is convergent to a function f at $x \in G$ if its partial sums

$$\sum_{\sigma \in A_n} d_\sigma \operatorname{tr}(B_\sigma U_x^\sigma)$$

are convergent to f(x) at x.

We prove that if a series (??) is everywhere convergent to a finite function f then f is integrable on G in the sense of some generalization of Henstock integral and (??) is the Fourier-Stieltjes series of the measure $\mu = \int f$.

Some extensions to the non-abelian case of results of [?] related to the properties of the sets of uniqueness are also obtained.

Bibliography

- V. Skvortsov, F. Tulone, Kurzweil-Henstock type integral on zerodimensional group and some of its applications, Czechoslovak Math. J. 58 (2008), 1167–1183.
- [2] N. Kholshchevnikova, V. Skvortsov, On U- and M-sets for series with respect to characters of compact zero-dimensional groups, J. Math. Anal. Appl. 446 (2017), no. 1, 383–394.
- [3] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, New York, NY: Springer-Verlag New York, 1970.