On the generalized binomial transform

Slobodan Tričković (speaker), Miomir Stanković
University of Nič, Serbia; Mathematical Institute of the Serbian Academy of Sciences and Arts, Serbia

Attaching an additional sequence $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}_{0}}$ to the binomial transform, we obtain its extension that we use to define the generalized binomial transform \mathcal{T}_{α}, which presents a correspondence between a set of infinitely continuously differentiable functions and a set of sequences linked to a generalized linear difference operator A_{α}. Taking different sequences $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}_{0}}$ gives rise to a family of transforms \mathcal{T}_{α}.

We make use of \mathcal{T}_{α} to map derivatives to A_{α}, and integrals to A_{α}^{-1} as well. The inverse transform \mathcal{B}_{α} of \mathcal{T}_{α} is introduced and its properties are studied. Choosing the sequence $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}_{0}}$ such that $\alpha_{n}=(-1)^{n}$, it is shown that \mathcal{B}_{α} reduces to the Borel transform. Also, applying \mathcal{T}_{α} for the same sequence $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}_{0}}$ to Bessel's differential operator $D_{x}=\frac{d}{d x} x \frac{d}{d x}$, we obtain discrete Bessel's operator $\Delta n \nabla$.

As applications of Bessel's differential and discrete operator, it is shown that eigenfunctions of Bessel's operator are mapped to eigenvectors of discrete Bessel's operator, and models of population growth are considered.

