On the generalized binomial transform

Slobodan Tričković (speaker), Miomir Stanković University of Nič, Serbia; Mathematical Institute of the Serbian Academy of Sciences and Arts, Serbia

Attaching an additional sequence $\{\alpha_n\}_{n\in\mathbb{N}_0}$ to the binomial transform, we obtain its extension that we use to define the generalized binomial transform \mathcal{T}_{α} , which presents a correspondence between a set of infinitely continuously differentiable functions and a set of sequences linked to a generalized linear difference operator A_{α} . Taking different sequences $\{\alpha_n\}_{n\in\mathbb{N}_0}$ gives rise to a family of transforms \mathcal{T}_{α} .

We make use of \mathcal{T}_{α} to map derivatives to A_{α} , and integrals to A_{α}^{-1} as well. The inverse transform \mathcal{B}_{α} of \mathcal{T}_{α} is introduced and its properties are studied. Choosing the sequence $\{\alpha_n\}_{n\in\mathbb{N}_0}$ such that $\alpha_n = (-1)^n$, it is shown that \mathcal{B}_{α} reduces to the Borel transform. Also, applying \mathcal{T}_{α} for the same sequence $\{\alpha_n\}_{n\in\mathbb{N}_0}$ to Bessel's differential operator $D_x = \frac{d}{dx}x\frac{d}{dx}$, we obtain discrete Bessel's operator $\Delta n\nabla$.

As applications of Bessel's differential and discrete operator, it is shown that eigenfunctions of Bessel's operator are mapped to eigenvectors of discrete Bessel's operator, and models of population growth are considered.