IDEAL CONVERGENT SUBSEQUENCES
AND REARRANGEMENTS

These are results obtained together with Sz. Gląb, M. Popławski and A. Wachowicz. Let \(I \) be an ideal on \(\mathbb{N} \) which is either analytic or coanalytic. Assume that \((f_n) \) is a sequence of functions with the Baire property from a Polish space \(X \) into a Polish space \(Z \), which is divergent on a comeager set. We investigate the Baire category of \(I \)-convergent subsequences and rearrangements of \((f_n) \). Our result generalizes a theorem of Kallman. A similar theorem for subsequences is obtained if \((X, \mu) \) is a \(\sigma \)-finite complete measure space and a sequence \((f_n) \) of measurable functions from \(X \) to \(Z \) is \(I \)-divergent \(\mu \)-almost everywhere. Then the set of subsequences of \((f_n) \), \(I \)-divergent \(\mu \)-almost everywhere, is of full product measure on \(\{0,1\}^\mathbb{N} \). Here we assume additionally that \(I \) has property (G).

Mathematical Reviews subject classification: Primary: 40A35; Secondary: 40A05, 54E52
Key words: Ideal convergence, Baire category, subsequences, rearrangement