Let \(\{f_n\} \) be an orthonormal system in a Hilbert space \(L_2(X) \). Then a set \(A \subset X \) is called a \(\mathcal{V}\)-set for the system \(\{f_n\} \) if convergence of a series \(\sum_n a_n f_n(x) \) to a finite summable function \(f \) on \(X \setminus A \) implies that this series is the Fourier series of \(f \). Setting \(f = 0 \) on \(X \setminus A \), we get the definition of a \(\mathcal{U}\)-set for the system \(\{f_n\} \). Each \(\mathcal{V}\)-set is evidently a \(\mathcal{U}\)-set.

We study analysis on Vilenkin groups \(G \), i.e., on zero-dimensional second-countable compact commutative groups (see \([?]\)). The elements of the dual group of \(G \) form an orthonormal system \(\{f_n\} \) in \(L_2(G) \).

Harris proved \([?]\) that any closed, measure zero subgroup of a Vilenkin group is a \(\mathcal{U}\)-set. Grubb found another examples of \(\mathcal{U}\)-sets and de-facto proved that any closed \(\mathcal{U}\)-set is a \(\mathcal{V}\)-set (see, for example, \([?, ?]\)). In \([?]\) some category properties of \(\mathcal{U}\)-sets are established.

In the multidimensional case, examples of countable \(\mathcal{U}\)-sets for square convergence are constructed in \([?]\). We introduce a multidimensional analog of Dirichlet sets in the product of Vilenkin groups and prove that all translations of such sets are \(\mathcal{V}\)-sets and therefore \(\mathcal{U}\)-sets. The full sequence of rectangular partial sums and restricted rectangular convergence are considered. The main tool of our investigation is quasi-measures and the concept of \(\Gamma\)-continuity of ones.

Bibliography

