Progress toward developing an IUPAC FAIR standard for spectroscopic data description & management

ACS National Meeting, April 14, 2021

Robert M. Hanson, Damien Jeannerat, Mark Archibald, Ian Bruno, Stuart J. Chalk, Antony N. Davies, Robert J. Lancashire, Jeff Lang, Henry S. Rzepa

IUPAC Project 2019-031-1-024

Division of Chemical Information: Framing FAIR: Scientific Research Data Sharing Policies, Frameworks and Principles

Today's presentation

- 1. The Vision
- 2. The Problem
- 3. The Task
- 4. The Project
- 5. Progress to Date
 - Six Key Design Decisions
 - Three Preliminary Experiments
- 6. Going Forward

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

Bob Hanson Damien Jeannerat

FAIRSpec PROJECT TEAM

IUPAC Project: 2019-031-1-024

Development of a Standard for FAIR Data Management of Spectroscopic Data

Mark Archibald

lan Bruno

Stuart Chalk

Tony Davies

Robert Lancashire

Henry Rzepa

Today's presentation

1. The Vision

- 2. The Problem
- 3. The Task
- 4. The Project
- 5. Progress to Date
 - Six Key Design Decisions
 - Three Preliminary Experiments
- 6. Going Forward

The FAIRSpec Vision

To enable a world where we can all...

draw a structure or substructure and find all published spectra - of a given type - related to that compound/fragment, filtered by data format; quality; journal; author; date, or other common characteristics
 quickly find linked data associated with those spectra

The FAIRSpec Vision

To enable a world where we could...

- validate assignments prior to publication
- submit "raw" (lossless) spectral data with publications, generating various forms of data representation
- implement direct "ELN-to-publish" systems
- automatically add to/harvest spectral data for AI-based global spectroscopic analysis projects

The FAIRSpec Vision

- spectra will be found based on key aspects of the data and methods (e.g NMR frequency & nuclei, IR method)
- spectra will be found by standard compound identifiers
 (structure, substructure, SMILES, InChI, etc.)
- smart methods of rendering spectral information associated with journal publications will be possible
- new technologies will be built based upon the standards

Today's presentation

- 1. The Vision
- 2. The Problem
- 3. The Task
- 4. The Project
- 5. Progress to Date
 - Six Key Design Decisions
 - Three Preliminary Experiments
- 6. Going Forward

The Problem

- Too much reliance on published PDF "supplemental information" without concern for interoperability
- No central community-based effort to archive and make available spectroscopic data
- No standards for describing or relating that data to chemical structure

Today's presentation

- 1. The Vision
- 2. The Problem
- 3. The Task
- 4. The Project
- 5. Progress to Date
 - Six Key Design Decisions
 - Three Preliminary Experiments
- 6. Going Forward

The Task – To do what IUPAC does best

- Develop a standard vocabulary and structure in the area of chemistry
- Enable others to implement area-specific value-added services
- Enable services to work together using a shared set of data descriptors and protocols

Today's presentation

- 1. The Vision
- 2. The Problem
- 3. The Task
- 4. The Project
- 5. Progress to Date
 - Six Key Design Decisions
 - Three Preliminary Experiments
- 6. Going Forward

The Project

- (2018-19) IUPAC Committee on Publications and Cheminformatics Data Standards (CPCDS) sponsored two FAIR data workshops (Amsterdam and Orlando)
- (March 2020) Initiation of IUPAC Project 2019-031-1-024 two-year time frame
- first year **design**; second year **build**

Today's presentation

- 1. The Vision
- 2. The Problem
- 3. The Task
- 4. The Project
- 5. Progress to Date
 - Six Key Design Decisions
 - Three Preliminary Experiments
- 6. Going Forward

This project is not about the creation of any new file formats.

- not a new NMR-STAR or nmrML
- not an extension to JCAMP-DX
- not about repackaging binary FID data into new a "standard" format

We will not limit ourselves to one specific spectroscopic technique.

- start with a focus on NMR because of its significance
- provide a framework for inclusion of other techniques

We recognize four key pieces of the puzzle.

- the spectroscopic data itself
- associated chemical identifier/structure-related (meta)data
- associated structure-spectrum analysis (meta)data
- associated general key/value pair metadata (authors, associated DOIs, provenance, licenses, etc.)

We recognize the importance of multiple representations.

- drawing from successes in earth science and archival science
- varieties of spectroscopic data representations
- key aspects of acceptable chemical identifiers and structure formats

We recognize the importance of a **collection** and its associated **finding aid**.

- drawing specifically from archival science
- an isolated manufacturer data set has no intrinsic value
- connection to an appropriate chemical identifier is critical
- connection to related spectra and compounds is valuable
- key element is a structured finding aid

We will work closely with known (meta)data managers and other stakeholders, ensuring that whatever we do is mappable to their metadata as much as possible.

- publishers and authors (ACS, RSC)
- repository and database managers (HMDB, BMRB, NP-MRD, NMRShiftDB, nmrdb)
- chemical information services (PubChem)

Query builder for metadata search in DataCite : NMR data

https://doi.org/f357

2 Works

Compound 5. 1H NMR data for Epimeric Face-Selective Oxidations and Diastereodivergent Transannular Oxonium Ion Formation-Fragmentations: Computational Modelling and Total Syntheses of 12-Epoxyobtusallene IV, 12-Epoxyobtusallene II, Obtusallene X, Marilzabicycloallene C and Marilzabicycloallene D Henry Rzepa Results published 2016 in

NMR Data

Other Identifiers DOI: https://doi.org/10.14469/hpc/1280

Files

Filename	Size	Туре	Description		
compound5.cdx	4KB	chemical/x-cdx	Connection table		
<u>compound 5-</u> <u>1H.mnova</u>	287KB	chemical/x-mnova	1H NMR Data		
<u>compound 5-</u> <u>1H.mnpub</u>	0	chemical/x-mnpub	Mestrenova signature file for compound 5-1H.mnova		
<u>compound5.mol</u>	2KB	chemical/x-mdl-molfile	Molfile		

Member of collection / collaboration

DOI	Description
<u>10.14469/hpc/1267</u>	NMR data for Epimeric Face-Selective Oxidations and Diastereodivergent Transannular Oxonium Ion Formation-Fragmentations: Computational Modelling and Total Syntheses of 12-Epoxyobtusallene IV, 12-Epoxyobtusallene II, Obtusallene X, Marilzabicycloallene

Conclusions:

- registration can work within the DataCite system
- institutional repositories need to use PIDs (persistent identifiers) at whatever granularity is desired
- key "deliverables" include landing pages, spectral data packages, and compound information

Preliminary Experiment #2 XML Finding Aids

- Hand-generated a crude finding aid for a paper.
- Used the Library of Congress EAD XML format and simple XML style sheet, creating structure drawings on the fly.

https://chemapps.stolaf.edu/test/fairspec/sample/example1/findingaid.xml

Preliminary Experiment #2 XML Finding Aids

Conclusions:

- XML + structured style sheet could work for implementation
- Was possible to link SMILES to on-demand structure representations created by other services
- EAD is a well thought out archival structure
- Good example of nested collections of related "data"
- Good example of how to map schemas

Preliminary Experiment #3 ACS Publications FAIR Data Pilot

Encouraging Submission of FAIR Data at *The Journal of Organic Chemistry* and *Organic Letters*

Angela M. Hunter, Erick M. Carreira, and Scott J. Miller

Image: Cite this: Org. Lett. 2020, 22, 4, 1231–1232Article ViewsAltmetricCitationsPublication Date: February 12, 2020 ~7242286https://doi.org/10.1021/acs.orglett.0c00383LEARN ABOUT THESE METRICSCopyright © 2020 American Chemical SocietyLEARN ABOUT THESE METRICS

- Authors submitted data as supporting information
- Over 200 submissions to date
- 13 submissions unpacked at St. Olaf College and analyzed

Preliminary Experiment #3 ACS Pubs FAIR Data

ACS	Size (MB)		digital entities			
Collection	(zip)	(raw)	files	type		
<u>joc.0c00770</u>	25	37	720	11 cmpd dirs; 24 Bruker datasets & 12 .mnova files		
orglett.0c00874	27	40	1616	36 cmpd dirs; 76 Bruker datasets		
orglett.0c00967	29	41	1354	33 cmpd dirs; 62 Bruker datasets		
orglett.0c01022	15	52	66	2 dirs; 64 .mnova files		
orglett.0c01197	79	101	61	2 dirs; 59 .mnova files		
orglett.0c01277	52	74	2463	63 cmpd dirs; 124 Bruker datasets		
orglett.0c01297	57	73	1544	29 cmpd dirs; 58 Bruker datasets		

Preliminary Experiment #3 ACS Pubs FAIR Data

Observations:

- authors are interested demand is there
- one-to-one and one-to-many (structure-to-spectrum)
- only one author included structural representations
- proprietary formats only (no long-term stable JCAMP-DX)
- no analyses (mnova?)

Preliminary Experiment #3 ACS Pubs FAIR Data

Conclusions:

- "data representation" and "structure representation"
- implementation workflow will be critical here
- essential to connect one or more chemical identifiers with one or more NMR datasets
- valuable to have at least a minimum analysis
 ...(e.g. the "journal description")

One to One and One to Many FAIR Relationships

Levels of NMR data reusability

data representations and reuse level		possible processing		viewing and analysis facilitated (* with additional processing)					
		full	near- full	interactive	enhanced viewing	non- interactive viewing	visual comparison	machine comparison	
raw data (FID + parameters)	10	yes	yes	yes*	yes*	yes*	yes*	yes*	
minimally processed data, (r+i spectra)	9		yes	yes*	yes*	yes*	yes*	yes*	
fully processed data (real spectrum)	8			yes	yes*	yes*	yes*	yes*	

Levels of NMR data reusability

data representations and reuse level		possible processing		viewing and analysis facilitated (* with additional processing)					
		full	near- full	interactive		non- interactive viewing	visual comparison	machine comparison	
peak tables, shifts, integration, and splitting	7			yes*	yes*	yes*	yes	yes	
PDF	6				yes	yes	yes		
journal-style description	5				yes*	yes*	yes	yes#	
image (PNG)	4					yes	yes		
peak table shifts only	3						yes	yes#	

to some extent (involves lossiness, human error or bias)

Today's presentation

- 1. The Vision
- 2. The Problem
- 3. The Task
- 4. The Project
- 5. Progress to Date
 - Six Key Design Decisions
 - Three Preliminary Experiments
- 6. Going Forward

We believe we have a basic outline of the issues.

Summary

The task now is to develop realistic metadata standards that can be accepted and widely implemented.

Summary

We have identified stakeholders and are starting to work with them.

Going Forward Focus on the task at hand

Build a set of metadata specifications that:

- 1. describes multiple spectroscopic data representations,
- 2. describes structure and analysis representations relating to that data, and
- 3. describes the contents of a spectroscopic data collection

Keeping in mind that it must:

- 1. connect all of this using standardized mappable metadata;
- 2. allow for **selective retrieval** of a variety of spectral data representations, structural models, and analyses; and
- 3. allow for metadata to be managed independently from the data itself

Going Forward Open/Good Questions

- 1. How does one distinguish data from *meta*data? (Is that important?)
- 2. Are there examples of any of this already out there?
- 3. What about predicted vs. experimental vs. simulated spectral "data"?
- 4. What about experimental data manipulation? Hacked data? Deep fakes?
- 5. Data validation? AI ideas?
- 6. Community efforts? Funding?

Going Forward How you can help

hansonr@stolaf.edu

- 1. Identify yourself as an interested party join the discussion
- 2. Express an interest in collaborating be and early adopter
- 3. Work along side us to set up a reference implementation
- 4. Suggest additional stakeholders
- 5. Comment and suggest issues and solutions (please!)

damien.jeannerat@protonmail.com

Appendix

supplemental slides follow

References

- 1. ACS FAIR Data Pilot https://pubs.acs.org/doi/abs/10.1021/acs.joc.0c00248
- 2. Biomagnetic Resonance Data Bank (BRMB) <u>https://bmrb.io/</u>
- 3. "FAIR Enough?" Spectroscopy Europe (16 Mar 2021) <u>https://www.spectroscopyeurope.com/td-</u> column/fair-enough
- 4. Human Metabolome Database (HMDB) <u>https://hmdb.ca</u>
- 5. Library of Congress Encoded Archival Description (EAD) <u>https://www.loc.gov/ead</u>
- 6. NASA Earth Science Data Processing Levels <u>https://earthdata.nasa.gov/collaborate/open-data-services-and-software/data-information-policy/data-levels</u>
- 7. Natural Products Magnetic Resonance Database (NP-MRD) http://www.npmrd-project.org
- 8. NMRDB https://www.nmrdb.org/
- 9. NMReData https://nmredata.org/
- 10. NMR Markup Language/Controlled Vocabulary (nmrML/nmrCV) http://nmrml.org/
- 11. NMRShiftDB https://nmrshiftdb.nmr.uni-koeln.de/
- 12. NMR-STAR https://link.springer.com/article/10.1007/s10858-018-0220-3
- 13. PubChem https://pubchem.ncbi.nlm.nih.gov
- 14. Research Data Aliance Data Foundation Terminology (RDA-DFT) <u>https://www.rd-alliance.org/system/files/DFT%20Core%20Terms-and%20model-v1-6.pdf</u>

Some key definitions "data" vs. "metadata"

"one person's data is another person's metadata"

(we are probably not going to agree on this)

Whether a phased NMR spectrum is data – or is just the FID?

Whether a spectral analysis of any sort is data?

...moving on...

Mike Taylor, 2004 http://www.miketaylor.org.uk/tech/metadata.html

Some key definitions RDA Terminology for Digital "Entities" vs "Objects"

Digital Entity (DE) – Anything that can be represented by a sequences of 0s and 1s.

Digital Object (DO) – A structured **DE** that is named with associated attributes that can be used to reference it.

Digital Aggregation – A bundle of **DE**s.

Digital Collection – An aggregation which contains **DO**s and **DE**s identified by a PID and described by metadata.

https://www.rd-alliance.org/system/files/DFT%20Core%20Terms-and%20model-v1-6.pdf

Terminology - Digital "entities" and "objects"

FAIR Digital Object Representation

Metadata is essential for the findability of the data

How can specialized databases find relevant data?

More quotes on (meta)data

http://statmath.wu.ac.at/courses/data-analysis/itdtHTML/node54.html

7.3 Metadata

There are many confusing definitions of metadata, not helped by the fact that one man's data is another man's metadata. We will use a very simple definition by exclusion.

Metadata is everything other than the raw data that we will analyse.

This definition runs the risk of being too broad, but there is a greater danger from too little metadata being stored and shared rather than too much, so anything that might accidentally lead to an over abundance of metadata is a risk worth taking.

Examples – Current Practice PubChem

A PubChem landing page can be thought of as a sort of digital finding aid.

Extracts key metadata of (presumed) interest and points to more resources.

https://pubchem.ncbi.nlm.nih.gov/compound/2519

Examples – Current Practice PubChem 1. Structures

A PubChem landing page can be thought of as a sort of digital finding aid. Extracts key metadata of (presumed) interest and points to more resources.

1. Structures	11. Identification
2. Names and Identifiers	12. Safety and Hazards
3. Chemical and Physical Properties	13. Toxicity
4. Spectral Information	14. Associated Disorders and Diseases
5. Related Records	15. Literature
6. Chemical Vendors	16. Patents
7. Drug and Medication Information	17. Biomolecular Interactions and Pathways
8. Food Additives and Ingredients	18. Biological Test Results
9. Pharmacology and Biochemistry	19. Classification
10. Use and Manufacturing	20. Information Sources

Examples – Current Practice PubChem

...and points to more resources... and portals... 4 Spectral Information

4.1 1D NMR Spectra

Showing 2 of 3 View More 🔀

1D NMR Spectra

NMR: 204 (Varian Associates NMR Spectra Catalogue)

Hazardous Substances Data Bank (HSDB)

	1D NMR Spectrum 1751 - Caffeine (HMDB0001847)
1D NMR Spectra	1D NMR Spectrum 2495 - Caffeine (HMDB0001847)
	1D NMR Spectrum 3192 - Caffeine (HMDB0001847)

Examples – Current Practice Human Metabolome Database

	HMDB	Browse 👻	Search 👻	Downloads	About 🚽 🛛 Co	ontact Us				Search
where we can explore the data visually	1H NMR Spectrum (HMDB0001847) Spectrum Details HMDB ID: HMDB0001847 Compound name: Caffeine Spectrum type: 1H NMR Spectrum									
	Spectrum View									
	Viewer									
visualiy	Viewer Image									
	Spectra Viewer Instructions caffeine cluster: 3.590 pp peak: 3.590 pp							er: 3.590 ppm		
	120									
		7	6	5		4	3	2	1	o
	H # caffein	ppm H # caffeine Multiplets () 7.510 4.000 3.590 3.410								
	広 君	Hs AL	No.	Center	Peaks	Туре	H's	Atoms	Peak Centers	
	H-S		1	7.510	1	8	1	9	7.510	
	H-8		2	4.000	1	8	3	14	4.000	
		, de la como de la com	3	3.590	1	s	3	11	3.590	
	() () () () () () () () () ()	E E	4	3.410	1	s	3	13	3.410	

https://hmdb.ca/spectra/nmr_one_d/1751

Examples – Current Practice Human Metabolome Database

...and download the machinereadable data in a number of representations.

HMDB	Browse 🗸	Search 🗸	Downloads	About 🗸	Contact Us		Search			
Documentatio										
Document De		Download								
Spectra image		Download file								
Raw Free Indu	Raw Free Induction Decay file for spectral processing									
JCAMP file	JCAMP file									
List of chemica	List of chemical shift values for the spectrum									
nmrML		Download file								
Dissolution of	Dissolution of Standard Samples for NMR Protocol SOP 012 V1									
Conducting 'pr		Download file								
BMRB NMR-S		Download file								

https://hmdb.ca/spectra/nmr_one_d/1751