Chemical Kinetics: Rate Laws and Initial Rates (covering Topic 2, day 1)

1. The depletion of stratospheric ozone is a threat to life on Earth. Under certain conditions, the rate law for the decomposition hv [O]²

of ozone to oxygen by light,
$$2O_3 \xrightarrow{hV} 3O_2$$
, is Reaction Rate = $k \frac{[O_3]^2}{[O_2]}$

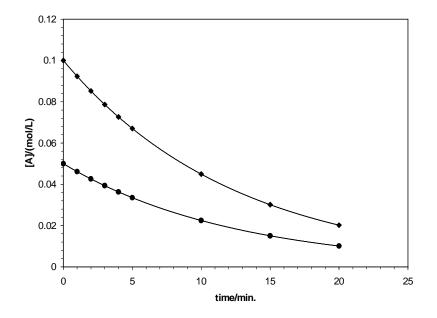
- a.) Give the individual reaction orders for O_3 and O_2 and the overall reaction order for the rate law.
- b.) What happens to the reaction rate if the concentration of O_3 is doubled?
- c.) What happens to the reaction rate if the concentration of O_3 is halved?
- d.) What happens to the reaction rate if the concentration of O_2 is halved?
- 2. Phosgene, COCl₂, is a toxic gas formed by the chemical reaction of carbon monoxide and chlorine gas.

$$CO(g) + Cl_2(g) \rightarrow COCl_2(g)$$

The initial rate of change in carbon monoxide concentration was monitored by infrared absorbance.

	Initial [CO]	Initial [Cl ₂]	Initial rate of change
Experiment	(mol/L)	(mol/L)	d[CO]/dt (mol/L-s)
1	0.200	0.500	-1.28E-06
2	0.200	0.100	-2.55E-07
3	0.100	0.100	-1.28E-07

- a.) Write the rate law for this reaction.
- b.) Determine the rate constant.
- 3. For the reaction $2A + 2B + C \rightarrow D$ the following data were collected at constant temperature:


Experiment	Initial [A] (mol/L)	Initial [B] (mol/L)	Initial [C] (mol/L)	Initial rate of change d[A]/dt (mol/L-s)
1	0.050	0.100	0.200	-4.80E-05
2	0.200	0.100	0.200	-1.92E-04
3	0.200	0.100	0.100	-4.80E-05
4	0.200	0.050	0.200	-3.84E-04

- a.) Write the rate law for this reaction.
- b.) Determine the rate constant.
- 4. Consider the reaction 3A + B → C. If B is in large excess compared to the concentration of A, we can assume the concentration of B changes very little during the reaction. We can just consider it constant and write

Reaction Rate =
$$k[A]^x[B]^y = k'[A]^x$$

Here k' is called a *pseudo rate constant*. The graph on the right shows data for two experiments carried out for a reaction with equation $3A + B \rightarrow C$ where [B] is initially 2.2 M in both cases. Based on the graph:

- (a.) Construct a table like those above showing initial [A] and d[A]/dt for the two experiments.
- (b.) From your table, determine the reaction order of A.
- (c.) Determine the pseudo rate constant. (Watch those units!)

