Chemical Kinetics: Temperature Dependence of Reaction Rates

Chemistry 126

- 1. The rate constant of a reaction is 0.001 s⁻¹ at 298 K with an activation energy of 50 kJ/mol. What is the value of the reaction rate constant at 325 K?
- 2. The rate constant of a reaction is 0.03 L mole⁻¹ s⁻¹ at 220 °C and 0.29 L mole⁻¹ s⁻¹ at 282 °C. What is the activation energy of the reaction?
- 3. The decomposition of nitrogen dioxide, 2NO₂ → 2NO + O₂, follows the rate equation Reaction Rate = k[NO₂]² (Bodenstein, M., Z. Phys. Chem., 1922, 100, 106) over a narrow temperature range. a.) Graph the data below in an Arrhenius plot. b.) Deduce the values A and E_a in the Arrhenius equation from your graph.

T/K	k/L mol ⁻¹ s ⁻¹
592.0	0.522
603.2	0.755
627.0	1.70
651.5	4.02
656.0	5.03

.

4. Tabun is the first and still one of the most toxic nerve agents ever discovered. (See http://www.emedicine.com/emerg/topic898.htm or http://www.opcw.org/resp/html/nerve.html for more information). First synthesized in 1936 by G. Schrader of I. G. Farben in Germany as a potential pesticide, tabun's biochemistry involves inhibiting the action of acetylcholinesterase, an important enzyme involved in nerve signal transmission. Tabun reacts with water to form hydrocyanic acid (HCN) as a byproduct in a pseudo-first-order reaction. The table below lists the half-life of tabun as a function of temperature in salt-water (Epstein, J.; Rosenblatt, D. H.; Gallacio, A.;

McTeague, W. F., Summary report on a data base for predicting consequences of chemical disposal operations, EASP 1200-12, January 1973, AD-B955399)

T/Celsius	t _{1/2} /min.
15	475
20	267
25	175

- a.) Calculate the rate constant at each temperature.
- b.) Make an Arrhenius plot and determine the activation energy for tabun hydrolysis. (Careful! Check those units!)
- c.) Using this information, what is the half-life of tabun in boiling water (at 100 °C)?
- 5. If the activation energy of a chemical reaction is 75 kJ/mol, how much faster is the *reaction rate* at 35 °C than at 25 °C? [HINT: What can you get with Ea and two temperatures?]