Chemical Kinetics: Reaction Mechanisms (covering Topic 4a)

Chemistry 126

- 1. Provide the molecularity and rate law for each of the following elementary reaction steps.
 - a.) $2NO_2(g) \rightarrow NO(g) + NO_3(g)$
 - b.) $ICl(g) + H_2(g) \rightarrow HI(g) + HCl(g)$
 - c.) $Cl_2(g) \rightarrow 2Cl(g)$
- 2. The reaction between 3-bromo-3-ethylpentane, (CH₃CH₂)₃CBr, and water can be used to produce the alcohol 3-ethyl-3-pentanol, (CH₃CH₂)₃COH and hydrobromic acid (HBr). Consider the proposed mechanism below.

Step 1:
$$(CH_3CH_2)_3CBr(aq) \xrightarrow{k_1} (CH_3CH_2)_3C^+(aq) + Br^-(aq)$$

Step 2:
$$(CH_3CH_2)_3C^+(aq) + H_2O(l) \rightarrow (CH_3CH_2)_3COH_2^+(aq)$$

Step 3:
$$(CH_3CH_2)_3COH_2^+(aq) \rightarrow (CH_3CH_2)_3COH(aq) + H^+(aq)$$

- a.) What is the overall equation for this reaction?
- b.) Identify the intermediates.
- c.) Write the individual rate laws for each of the three elementary reaction steps. Argue that, for the mechanism as written,

$$(Reaction Rate)_1 = (Reaction Rate)_2 = (Reaction Rate)_3$$

- d.) What is the overall rate law for this reaction?
- 3. Ozone (O₃) is a major component of photochemical smog formed by the reaction of nitric oxide (NO₂), which is from car exhaust, and atmospheric oxygen. Consider the following mechanism.

Step 1: NO₂
$$(g) \xrightarrow{k_1}$$
 NO $(g) + O(g)$

Step 2: O
$$(g)$$
 + O₂ $(g) \rightarrow$ O₃ (g)

- a.) What is the overall equation for this reaction?
- b.) Identify the intermediate in this mechanism.
- c.) Write the rate law for each elementary reaction step.
- d.) Provide the overall rate law for this reaction assuming a steady state.
- e.) Draw a graph depicting how the concentrations of NO₂, NO, O, O₂ and O₃ change with time. (No need to be quantitative here, just relatively correct. Hint: Consider the steady state.)

CHALLENGE PROBLEM:* Based on the mechanism given in Problem 3 and given $k_1 = 0.002$ s⁻¹ and $k_2 = 30,000$ L/mol·s, consider the following problem: At 11:00 AM on a hot summer morning (85 °F) in Los Angeles after much commuter travel, [NO₂] = 10 ppm, and a state of smog emergency is called. Under these conditions, what must be the concentration of oxygen atoms, O(g), in the air in ppm, assuming a steady state? (Consider the O₂ pressure to be approximately 0.23 atm.) If all the cars were instantly turned off (as in the movie *The Day the Earth Stood Still*), at what time could the state of emergency be called off, if that required [NO₂] to be less that 0.5 ppm?

*One bonus point; all or none; must be done ON YOUR OWN (or with a group)—not at the problem session with the teaching assistant!—must be turned in on a separate sheet of paper directly to your professor.