- (5) 1. Draw a valid Lewis structure for any compound having the molecular formula C₄H₈O₂.
- (8) 2. In each case, one resonance contributor is drawn. Draw a second resonance contributor.
 - a. ON

b. O C ----

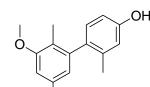
- d O
- (10) 3. On the structure shown, add all implied H atoms and indicate the hybridization of each carbon.

b.

- (10) 4. In each case, show the direction of the bond dipoles involving heteroatoms and indicate whether or not the compound is polar.
- CI

Br Br

- (6) 5. In each case, circle or draw in the most acidic hydrogen.
 - a. 0
- OH OH
- (12) 6. Predict the outcome (two products) of each of the following acid/base reactions. Assume one mole of each reactant is present. Indicate "no reaction" if you think (essentially) nothing will happen.
 - a. OH-
 - b. O + HCI -
 - c. OH + H


- (9) 7. In each case, pick the stronger acid.
 - a. OH
- or
- NH₂

- b. NH₂
- or
- Дон

- , N OH
- or
- ОН
- (9) 8. In each case, pick the stronger base.
 - a. 0
- or
- ⊢NH

- b. O
- or
- **∕**_0[⊝]

- N OH
- or
- ↓ _OH
- (10) 9. In each case below, identify (name) all functional groups.

(6) 10. List the three types of inter-molecular forces associated with covalent compounds in order of increasing strength.

weakest

strongest

(15) 11. Explain....

- a. ...why ethyl ether, CH₃CH₂OCH₂CH₃, has a higher boiling point than methyl ether, CH₃OCH₃, but a lower boiling point than ethanol, CH₃CH₂OH.
- b. ...why benzoic acid, C₆H₅CO₂H is soluble in 1 M NaOH solution but not 1 M HCl solution.
- c. ...what the difference is between soluble and miscible.