General and Miscelleneous

1. How many electrons occupy the bonding molecular orbitals of a CN triple bond? O A) 2 O B) 4 O C) 6 O D) 8
2. Which of the following species is not amphoteric? O A) NH ₃ O B) HF O C) NH ₄ ⁽⁺⁾ O D) HCO ₃ ⁽⁻⁾
3 What is the relationship of the two structures shown below?
H ₃ C + H ₂ C + H ₃ C + H ₃ C + H ₃ C + C + C + C + C + C + C + C + C + C +
$(CH_3)_2$ CH $\stackrel{\text{H}_2}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{\text{CH}_3}}{\overset{C}}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}}}}}}$
O A) they are identical.
OB) they are conformations of the same structure
OC) they are constitutional isomers.
OD) they are different compounds with different compositions
4 Which of the following molecules will not have a dipole moment?
O A) CH ₃ Cl
O B) CH ₃ OCH ₃
○ C) CH ₂ Cl ₂ ○ D) CCl ₄
——————————————————————————————————————
5 Which of the following molecules has a dipole moment?
O A) CBr ₄
○ B) CH ₂ =CH ₂ ○ C) BF ₃
\bigcirc D) SO ₂
6 Which of the following molecules has a linear shape?
\bigcirc A) NH ₃
\bigcirc B) H ₂ S
\bigcirc C) CO ₂
O D) H ₂ CO
7 Which of the following intermediates is pyramidal in shape?
O A) H ₃ C(+)
O B) H ₂ C:
O C) H ₃ C:(-)
○ D) HC=C:(-)
8 In which compound does carbon have the highest oxidation state?
○ A) CH ₄ ○ B) HCN
○ C) H ₂ CO
O D) CH ₂ Cl ₂
9 Which of the following statements applies to a $C_{10}H_{14}O_2$ compound?
O A) it may have 2 double bonds and 2 rings
O B) it may have 3 double bonds and 0 rings
 C) it may have 1 triple bond and 3 rings D) it may have 0 double bonds and 3 rings
D) it may have 0 double bonds and 3 migs
10 What functional group is present in the terpene camphor?
X.
4
O A) hydroxy
O B) carboxy
O C) carbonyl
\bigcirc D) oxy
11 What functional class is represented by the alkaloid coniine?

	1	1
organic	prob	lems

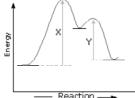
A) amine					
O A) annue O B) imine O C) amide O D) nitrile					
\bigcirc A) NH ₃	following com	pounds would be	considered an electrophil	ic reagent?	
○ B) Br₂○ C) CH₃OH					
O D) NH ₂ OH					
○ A) CH₂Cl₂○ B) C₆H₁₂ (c	yclohexane)	pounds would yo	ou expect to be most solub	e in water?	
○ C) CH₃CH₂○ D) C₂H₅OC					
O A) CH ₃ CH=	=O	ave similar mole	cular weights. Which has	he highest boiling point?	
○ B) C₂H₅OH○ C) CH₃OCH					
O D) CH ₃ CH ₂					
15 Which of the A) CH ₃ CH ₂ B) CH ₃ CH ₂	OCH ₃ and CH ₃	3CH ₂ CHO	constitutional isomers?		
O C) CH ₃ COC	CH ₂ CH ₃ and CI	H ₃ CH ₂ COCH ₃			
O D) CH ₃ CH ₂	CH ₂ CHO and (CH ₃ COCH ₂ CH ₃			
16 Which of the A) tert-butar B) diethyl et	nol	pounds may be c	lassed as a protic solvent?		
O C) n-hexane O D) acetone					
17 Classify the f	following reacti	on.			
0 + H	-C≣N	OH C≣N			
O A) substituti	ion	~			
O B) addition O C) elimination					
O D) rearrange	ement				
18 Which of the ○ A) H ₂ O	following is n o	ot a nucleophile?			
○ B) CH₃NH₂○ C) C₂H₅SH					
O C) C_2H_5SH O D) C_6H_{12} (c					
19 Which of the		ot an electrophile	?		
○ A) C₂H₅OC○ B) BF₃	² H ₅				
○ C) [CH₃]₃C○ D) HOCl	(+)				
20 Which Lewis	formula is the	best representati	on of N ₂ O?		
⊕ ⊝ :N≡N−O:	⊝ ⊕ N=N=0	⊙ (2+) ⊙ N=0=N	N-N=0		
(A)	(B)	(C)	(D)		
0	0	0	0		

organic	problems
---------	----------

21 Which of the following compounds has a C-H bond with the lowest bond dissociation energy? ○ A) C ₂ H ₆ ○ B) C ₆ H ₆
\bigcirc C) C_2H_2 \bigcirc D) $CH_3CH=CH_2$
22 In order for a reagent to behave as a nucleophile it must have A) an overall positive charge. B) an overall negative charge. C) a non-bonding electron pair. D) a nitrogen or sulfur atom.
23 The H–C–O bond angle in H ₂ C=O (formaldehyde) is approximately A) 90° B) 109°. C) 120°. D) 180°.
24 Which of the following structural pairs represents contributors to a resonance hybrid? O A
OD io: and io-H
25 Which of the following molecular formulas is reasonable for a stable compound? ○ A) C ₈ H ₁₄ O ₂ Cl ○ B) C ₆ H ₁₄ Br ₂ ○ C) C ₇ H ₁₀ NF ○ D) C ₃₀ H ₅₄ N ₂ Cl
26 What formal charges are present in the molecule C ₆ H ₅ C≡N-O? (all heavy atoms have a valence shell octet, and C ₆ H ₅ - is a phenyl group) ○ A) N is -1 and C is +1 ○ B) N is +1 and C is -1 ○ C) O is -1 and C is +1 ○ D) O is -1 and N is +1
27 Which statement about members of a homologous series is true? A) they are all constitutional isomers. B) they are always hydrocarbons. C) each differs from its nearest neighbors by 14 amu. D) they may also be classified as tautomers.
28 How many structurally distinct (different) sets of hydrogens are present in (CH ₃) ₃ CCH ₂ OCH ₃ ? O A) 2 O B) 3 O C) 4 O D) 8
29 The pK _a s of H ₂ CO ₃ are 6.4 & 10.3. The pK _a of HOBr is 8.7. If equimolar amounts of Na ₂ CO ₃ and HOBr are dissolved in water what will be the predominant anionic species in the resulting solution? One is a constant of Na ₂ CO ₃ and HOBr are dissolved in water what will be the predominant anionic species in the resulting solution? One is a constant of Na ₂ CO ₃ and HOBr are dissolved in water what will be the predominant anionic species in the resulting solution? One is a constant of Na ₂ CO ₃ and HOBr are dissolved in water what will be the predominant anionic species in the resulting solution? One is a constant of Na ₂ CO ₃ and HOBr are dissolved in water what will be the predominant anionic species in the resulting solution? One is a constant of Na ₂ CO ₃ and HOBr are dissolved in water what will be the predominant anionic species in the resulting solution? One is a constant of Na ₂ CO ₃ and HOBr are dissolved in water what will be the predominant anionic species in the resulting solution? One is a constant of Na ₂ CO ₃ and HOBr are dissolved in water what will be the predominant anionic species in the resulting solution? One is a constant of Na ₂ CO ₃ and HOBr are dissolved in water what will be the predominant anionic species in the resulting solution?
30 Which of the following is a conjugate base of CH ₃ NHOH? ○ A) CH ₃ NH ⁻¹ ○ B) CH ₃ NHO ⁻¹

O C) CH ₃ NH ₃	F.
--------------------------------------	----

O D) CH₂=NOH⁻¹


31 A Lewis formula for diazomethane, CH2N2, is shown on the left below.

Which of the formulas within the brackets would be considered a proper resonance contributor to this structure?

32 The curved arrows in the formula on the left represent a chemical reaction.

Which of the formulas within the brackets would constitute the product(s) from this reaction ?

33 Which of the descriptions (A to D) correctly describe the following energy diagram?

- A) A two-step exothermic reaction having an activation energy = X
- O B) A two-step endothermic reaction having an activation energy = Y
- C) A two-step exothermic reaction having an activation energy = Y
- O D) A two-step endothermic reaction having an activation energy = X

34 Which of the following series contain a free radical, a nucleophile and an electrophile?

- O A) Br BF₃ NH₃
- \bigcirc B) NH₃ NO₂⁺ Br₂
- O C) H₂O Cl· NH₃
- O D) Cl₂ CH₄ NH₃

35 The curved arrows in the formula on the left represent a chemical reaction.

Which of the formulas within the brackets would constitute the product(s) from this reaction?

36 Which of the following species has a planar molecular configuration?

- \bigcirc A) SO₃-2
- O B) SO₃
- O C) SOCl₂
- O D) SO₂Cl₂

37 Which of the following compounds does not have a planar molecular configuration?

- \bigcirc A) H₂C=CH₂
- \bigcirc B) H₂C=CH–C=CH
- O C) H₂C=C=CH₂
- O D) H₂C=C=C=CH₂

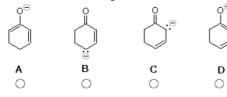
38 How many degrees of unsaturation does the following structure have?

- O B) 5
- O C) 6
- O D) 7

39 The structural formula for vitamin C is shown below

organic problems

Of the four hydroxyl groups, identified by shaded circles, which is most acidic?



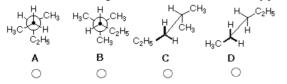
O A) 1

OB) 2 OC) 3

O D) 4

40 Which of the following structures is not a resonance contributor to the hybrid defined by the other three?

41 The following structures are resonance contributors for a reactive intermediate formed during ozonolysis of alkenes. Identify the most energetically favorable and the least favorable contributors?

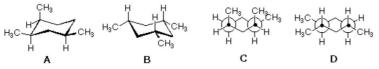

$$\begin{matrix} R & \circ \circ : \ominus & R & \circ \circ : & R & \circ \circ : \ominus & R & \circ \circ : \\ R & \ominus : & \bullet & \ominus : & C - O : & \bullet & \ominus : & C - O : \\ R & R & R & R & R & R & R & R \end{matrix}$$

- O A) III is most favorable & II is least favorable
- O B) I is most favorable & IV is least favorable
- O C) II is most favorable & IV is least favorable
- O D) I is most favorable & II is least favorable
- 42 How would the bond strength of the C:C double bond in an alkene compare to that of a C:C single bond in the corresponding alkane?
- (A) The double bond would have the same strength as the single bond.
- OB) The double bond would be stronger than, but less than twice as strong as the single bond.
- OC) The double bond would have exactly twice the strength of the single bond.
- OD) The double bond would have more than twice the strength of the single bond.
- 43 Which of the following cations is most stable?
- O A) FH₂⁺
- O B) OH₃+
- O C) NH₄+
- O D) CH₅⁺
- **44** The toxic environmental pollutant dioxin is 44.8% carbon, 1.25% hydrogen and 44.0% chlorine. Its molecular weight is 320±10 What is the molecular formula of dioxin?
- O A) C₁₀H₈O₄Cl₄
- O B) C₁₂H₆O₂Cl₄
- O C) C₆H₂OCl₂
- O D) C₁₂H₄O₂Cl₄
- 45 Which of the following covalent compounds does not have any formally charged atoms?
- A) (CH₃)₃NO
- \bigcirc B) CH₂=N=N
- O C) CH₃-O-N=O
- O D) CH₃C≡NO
- 46 Which of the following statements is not generally correct?
- O A) endothermic reactions have larger energies of activation than exothermic reactions
- O B) the rate of a reaction is proportional to its activation energy
- O C) the rate of a reaction generally increases as the temperature is raised
- O D) all reactions in which bonds are broken and formed have a significant activation energy
- 47 Which of the following compounds has no isomer?
- O A) CH₃CH₂CH₂Cl
- O B) CH₃CHO
- O C) CH₂=CHCl

O D) CICH ₂ CH ₂ CI	
18 Which of the following statements about carbon is not correct?	
A) carbon forms strong covalent bonds to itself, allowing chains	and rings to be made.
O B) carbon expands its valence shell to accomodate more than eig	ght electrons and thus forms double and triple bonds.
C) carbon forms strong covalent bonds to elements like nitrogen	and oxygen because it does not have lone pairs of valence electrons to destabilize the bonds.
O D) carbon and hydrogen have similar electronegativity and form	strong bonds to each other, thus avoiding the high reactivity shown by metal hydrides.
Check Answers	View Answers
Reset/Clear	You must correctly answer some of
·	these questions before viewing the engineers

Alkanes, Alkenes, Alkynes and their Alicyclic Couterparts

- 1. What is the IUPAC name for CH₃CH₂C(CH₃)₂CH₂CH(CH₃)₂?
- O A) 3,3,5-trimethylhexane
- O B) 2,2,5-trimethylhexane
- O C) 2,4,4-trimethylhexane
- O D) 1,1,3,3-tetramethylpentane
- 2. Which of the following conformational structures is 2-methylpentane?


 $\textbf{3} \text{ The alkane } CH_3CH_2C(CH_3)_2CH_2CH(CH_3)_2 \text{ has how many } 1^\circ, 2^\circ. \ 3^\circ \& \ 4^\circ \text{ carbon atoms?}$

	1°	2°	3°	4
() A)	4	2	2	1
○B)	5	1	2	1
OC)	5	2	1	1
(D)	6	1	1	1

4 There are four constitutional isomers having the formula C₄H₉Cl

Which of the following would be a correct IUPAC name for one of these isomers?

- A) 1-chloro-2-methylpropane
- O B) 3-chlorobutane
- O C) 2-chloro-2-methylbutane
- O D) 1-chloro-3-methylpropane
- 5 Which isomer of hexane has only two different sets of structurally equivalent hydrogen atoms.?
- O A) 2,2-dimethylbutane
- OB) 2-methylpentane
- O C) 3-methylpentane
- O D) 2,3-dimethylbutane
- $\textbf{6} \ Limiting \ your \ answer \ to \ cycloal kanes \ and \ ignoring \ stereo isomers, how \ many \ C_6H_{12} \ constitutional \ isomers \ are \ there?$
- O A) 6
- O B) 9
- O C) 11
- O D) 13
- 7 The IUPAC name for $(CH_3)_2CHCH(CH_3)CH_2CH=CH_2$ is ...
- O A) 4,5-dimethyl-1-hexene
- O B) 4,5,5-trimethyl-1-pentene
- O C) 2,3-dimethyl-5-hexene
- O D) 4-methyl-4-isopropyl-1-butene
- ${f 8}$ How many isomeric pentenes (C_5H_{10}) exist? (count stereoisomers as well)
- O A) 4
- O B) 5
- O C) 6
- O D) 7
- 9 The preferred conformation of cis-1,3-dimethylcyclohexane is ...
- O A) chair--diaxial
- O B) chair--diequatorial
- O C) chair--one axial / one equatorial
- O D) boat--mixed orientations
- 10 Which of the following represents the most stable conformation of all cis-1,2,4-trimethylcyclohexane?

20 Which of the following olefins would you expect to react most rapidly with concentrated sulphuric acid? O A) H₂C=CH₂

O D) HOCI

- B) (CH₃)₂C=CH₂
- O C) Cl₂C=CCl₂

2 of 7 2/6/2016 6:48 PM

O D) CF ₃ CH=CH ₂
21 Which compound is a likely product from addition of Cl ₂ to 1-butene? A) CH ₃ CH ₂ CH ₂ CHCl ₂ B) CH ₃ CH ₂ CHCiCH ₂ Cl C) ClCH ₂ CH ₂ CH ₂ CH ₂ Cl D) CH ₃ CH ₂ CCl ₂ CH ₃
22 The product from OsO ₄ hydroxylation of <i>trans</i> -2-butene will be A) achiral B) optically active C) racemic D) a meso compound
23 The product from bromine addition to trans-2-butene will be A) optically active B) racemic C) a meso compound D) chiral
24 Addition of 1 equivalent of bromine to 2,4-hexadiene at 0° C gives 4,5-dibromo-2-hexene plus an isomer. Which of the following is that isomer? A) 5,5-dibromo-2-hexene B) 2,5-dibromo-3-hexene C) 2,2-dibromo-3-hexene D) 2,3-dibromo-4-hexene
25 How many sp hybridized carbon atoms are present in a molecule of 3-methyl-4-vinyl-1,2-heptadien-5-yne? A) 2 B) 3 C) 4 D) 5
26 Treatment of 1-methylcyclohexene with an ether solution of diborane (B ₂ H ₆), followed by reaction with alkaline H ₂ O ₂ produces what product? A) 1-methylcyclohexanol B) cis-1-methylcyclohexane-1,2-diol C) cis-2-methylcyclohexanol D) trans-2-methylcyclohexanol
27 Which of the following will be the kinetically favored product from the depicted reaction? Brown B
28 Two C ₄ H ₆ isomers give the same C ₄ H ₈ O product from HgSO ₄ catalyzed hydration in aqueous acid. However, these isomers give different C ₄ H ₆ Br ₄ products with excess bromine. What are these isomeric hydrocarbons? A) cyclobutene and methylenecyclopropane B) 1,2-butadiene and 1,3-butadiene C) 1-butyne and 2-butyne D) 2-butyne and cyclobutene
29 Which of the following structures would be considered an enol tautomer of cyclopentanone? OH

30 Two C_5H_8 isomers undergo catalytic (Pt) hydrogenation to form the same C_5H_{10} product. On ozonolysis followed by oxidative workup (H_2O_2), one isomer gave a $C_5H_8O_4$ diacid, while the other isomer gave a $C_5H_8O_3$ ketoacid.

Which of the following isomeric pairs correspond to this evidence?

 \bigcirc A) cyclopentene and 1-pentyne

O B) cyclopentene and 1-methylcyclobutene	
C) 1-methylcyclobutene and 3-methylcyclobutene	
O D) cyclopentene and 3-methylcyclobutene	
31 Considering that the angles of a regular pentagon are 108°, why	v is cyclopentane not planar?
A) all the carbons are sp ² hybridized, so there is considerable a	
O B) The C-C bonds are formed by overlap of p-orbitals, so the	
O C) The cyclic overlap of bonding orbitals results in anti-aroma	
O D) The five C-C bonds have eclipsing strain.	
32 Which reaction conditions would best convert 3-hexyne to cis-3	3-hexene?
○ A) Pt catalyst and H ₂ .	
O B) Lindlar's Pd catalyst and H ₂ .	
C) Na in liquid NH ₃ .	
O D) NaNH ₂ in liquid NH ₃ .	
33 Reaction of 1-hexene with NBS (N-bromosuccinimide) forms t	two isomeric bromohexenes, one of which is 3-bromo-1-hexene.
Which of the following is the other isomer?	
O A) 1-bromo-2-hexene.	
O B) 6-bromo-1-hexene.	
○ C) 1-bromo-1-hexene. ○ D) 2-bromo-1-hexene.	
OD) 2-bromo-1-hexene.	
34 A C_6H_{10} hydrocarbon forms an insoluble silver salt when treate	
Acid catalyzed hydration with a $HgSO_4$ catalyst generates a single This compound is most likely which of the following?	e $C_6H_{12}O$ ketone, and pemanganate oxidation yields a $C_5H_{10}O_2$ carboxylic acid
A) cyclohexene.	
O B) methylenecyclopentane.	
O C) 1-hexyne.	
O D) 3-hexyne.	
 ○ B) 1,1,1,2-tetrachloropentane. ○ C) 1-chloro-2-trichloromethylbutane. ○ D) 1,1-dichloro-2-ethylcyclopropane. 	
36 Which of the following isomeric hexenes will have the smallest	it heat of hydrogenation?
O A) 4-methyl-1-pentene.	t in the standard of the stand
OB) (E)-4-methyl-2-pentene.	
C) (Z)-4-methyl-2-pentene.	
O D) 2-methyl-2-pentene.	
37 A C_8H_{14} hydrocarbon (X) is reduced by sodium in liquid ammo	
Both of these compounds undergo hydrogenation (Pt catalyst) to g	
Ozonolysis of Y with an oxidative workup produces a single C_4H_8	$_8$ O ₂ carboxylic acid. $_8$ H $_1$ O product, but reaction with bromine gives an achiral C $_8$ H $_1$ 4Br $_2$ product
What are X and Y?	311140 product, our reaction with brothine gives an actiffal C8f114bf2 product
A) X is 2,5-dimethyl-3-hexyne; Y is <i>cis</i> -2,5-dimethyl-3-hexer	ne.
O B) X is 2,5-dimethyl-3-hexyne; Y is <i>trans</i> -2,5-dimethyl-3-hex	
\bigcirc C) X is 2.5-dimethyl-1,5-hexadiene ; Y is 2,5-dimethyl-3-hexy	
OD) X is 2,5-dimethyl-2,4-hexadiene; Y is <i>cis</i> -2,5-dimethyl-3-h	hexene.
38 Which of the following compounds has two or more conjugated	d double bonds?
A B C D	
A B C D	
39 What reagent(s) would best achieve conversion of 3,3-dimethyl	l-1-butyne to the aldehyde (CH ₃) ₃ CCH ₂ CHO?
O A) H ₃ O ⁽⁺⁾ and catalytic Hg ⁽⁺²⁾	
\bigcirc B) (i) R ₂ BH in ether (R=C ₅ H ₁₁)	
(ii) H ₂ O ₂ and aqueous NaOH	
○ C) KMnO ₄ in aqueous NaOH	

4 of 7 2/6/2016 6:48 PM

- O D) (i) HOBr (ii) aqueous NaOH
- 40 Which of the following dienes would best serve as a diene in a Diels-Alder reaction?

41 Which of the following is the most likely product of this Diels-Alder reaction?

42 Which of the following is the most likely product of this Diels-Alder reaction?

43 Reaction of 1,1-dibromopentane with three equivalents of NaNH2 in ether is followed by treatment with 0.1M HCl at 0° C.

What is the product?

- O A) cyclopentene.
- O B) 1,2-pentadiene
- O C) 2-pentyne.
- O D) 1-pentyne.
- 44 Which of the following reagents and conditions would best serve to convert 1-butyne to 1,1-dibromobutane?
- A) 2 equivalents of HBr, no peroxides.
- O B) 2 equivalents of HBr, with peroxides.
- O C) 1 equivalent of Br₂.
- O D) 2 equivalents of Br₂ followed by i equivalent of KOH.
- 45 What is the relative rate of addition of HBr to I: 1,3-pentadiene; II: 1,4-pentadiene; and III: 1-pentyne?
- \bigcirc A) I > II > III.
- \bigcirc B) III > II > I.
- \bigcirc C) II > I > III.
- \bigcirc D) III > I > II.
- 46 A chiral C₆H₁₂ hydrocarbon undergoes catalytic hydrogenation to yield an achiral C₆H₁₄ product. What is the starting compound?
- O A) cis-2-hexene
- OB) 3-methyl-2-pentene
- O C) 4-methyl-2-pentene
- O D) 3-methyl-1-pentene
- 47 Reaction of 3,3,6,6-tetramethyl-1,4-cyclohexadiene, first with excess aqueous mercuric acetate, then followed by sodium borohydride reduction, produces a mixture of isomeric $C_{10}H_{20}O_2$ alcohols.

Excluding enantiomers, how many isomeric products may be formed in this reaction?

- O A) 2
- O B) 4
- O C) 6
- O D) 8
- $\textbf{48} \ A \ C_8 H_{12} \ chiral \ hydrocarbon, \textbf{X}, is \ reduced \ by \ catalytic \ hydrogenation \ to \ an \ achiral \ C_8 H_{14} \ compound.$

Ozonolysis of \mathbf{X} (H₂O₂ workup) gave a chiral C₈H₁₂O₄ dicarboxylic acid.

Which of the following could be X?

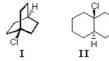
D

0	0	0	0	
O A) addition O B) addition O C) epoxido	on of hydrogen on of HBr to give lation by perben	(Pt catalyst) to g re bromocyclohe azoic acid to give	nexene may be considered an oxidation? ive cyclohexane. xane e cyclohexene oxide o give cyclohexanol	
In each case	two isomeric C	₈ H ₁₃ Br products	thexadiene may occur in the absence or presence of peroxides. It from both reactions?	
	0	0	0	
O A) addition O B) the do	on of ethene givuble bond is shiuble bond is cor	es a cyclobutane fted to a more su reverted to a triple	abstituted location.	
In addition t	o the planar con	figuration, three	onjugated annulene. non-planar structures may be considered, all of which are shown below. ed conformation? note that D is planar.	
A 0	B •	c °	D O	
O A) 1,4-Cy O B) 2,5-dia O C) Pheny	cloheptadiene nethyl-2,3,4-he	xatriene	entains the greatest number of sp ² hybridized carbon atoms?	
○ A) 1,4-Cy○ B) 2,5-dia○ C) Pheny	vclooctadiene nethyl-2,3,4-he	xatriene	ontains the greatest number of sp hybridized carbon atoms?	
○ A) 1,4-Cy○ B) 2,5-dia○ C) Pheny	vclooctadiene methyl-2,3,4-he	xatriene	ontains the greatest number of sp ³ hybridized carbon atoms?	
O A) cis-1,2 O B) trans-1 O C) cis-1,3	he following iso 2-dimethylcyclo ,2-dimethylcyclo 3-dimethylcyclo 1,3-dimethylcyc	hexane lohexane hexane	west heat of combustion?	
Z diplays the Oxidation of A) 2,5-die B) trans-2 C) cis-2,5	ree ¹³ C nmr sign	nals, all at higher one or potassium e nexene xene	hydrogen and a Pt catalyst to give 2,5-dimethylhexane as the only product. Field than 100 ppm, and does not absorb in the UV at wavelengths greater than 200 nm. permanganate produces a single $C_4H_8O_2$ carboxylic acid. Deduce the structure of Z.	
58 Which of t	he following is	the correct confi	gurational prefix for the following diene?	

58 Which of the following is the correct configurational prefix for the following diene?

Check Answers	Reset/Clear
	View Answers

Alkvi	Halides	Alcohols.	Fthere a	nd Fnov	ashir
AIKVI	Handes.	Aiconois.	Ethers a	na Ebox	aaes


1. What is the IUPAC name for CH ₃ CHClCH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Br?
A) 1-bromo-6-chloro-5-methylheptane
B) 7-bromo-2-chloro-3-methylheptane
C) 1-bromo-6-chloro-5,6-dimethylhexane
O) 6-bromo-1-chloro-1,2-dimethylhexane
2. What is the IUPAC name for (CH ₃) ₃ CCH(OH)CH ₂ CH(OH)CH ₂ CH(CH ₃) ₂ ?
A) 1,1,1,6-tetramethyl-2,4-heptanediol
B) 2,2,7-trimethyl-3,5-octanediol
C) 2,2,6,6-tetramethyl-3,5-heptanediol
O D) 2,7,7-trimethyl-4,6-octanediol
3 What is a correct name for the following compound?
O A) 1,1-dimethyl-2-cyclohexenol
O B) 3,3-dimethyl-1-cyclohexen-6-ol
C) 6,6-dimethyl-1-cyclohexen-3-ol
O D) 4,4-dimethyl-2-cyclohexenol
4 Which of the following is a chiral C ₅ H ₁₂ O 1°-alcohol?
A) 3-methyl-2-butanol
B) 2-methyl-2-butanol
C) 3-methyl-1-butanol
O D) 2-methyl-1-butanol
5 Which of the following reagents would you expect to react with bromocyclopentane by an S _N 2 mechanism?
○ A) C ₂ H ₅ OH
O B) C ₂ H ₅ O ⁽⁻⁾ K ⁽⁺⁾
O C) NaCN
O D) (CH ₃) ₃ N
6 Chloroethane, C ₂ H ₅ Cl, does not react with methanol under mild conditions.
What reagent could be added to the reaction mixture to increase the rate of substitution.?
O A) HCl (conc.)
O B) NaOH
○ C) NH ₄ OH
O D) AgNO ₃
7 Which of the following compounds is unlikely to react with sodium metal?
O A) C ₂ H ₅ OC ₂ H ₅
O B) C ₂ H ₅ OH
\bigcirc C) C ₂ H ₅ Br
\bigcirc D) C ₂ H ₅ NH ₂
8 The reaction of sodium ethoxide with iodoethane to form diethyl ether is classified as
A) an electrophilic substitution
O B) a nucleophilic substitution
O C) a radical substitution
O D) an electrophilic addition
9 Compound X reacts with HI. The product of this reaction, when treated with KOH in ethanol, gives Y (an isomer of X).
Ozonolysis of \mathbf{Y} (H ₂ O ₂ workup) produces two compounds: a two carbon carboxylic acid, and a four carbon ketone. What is \mathbf{X} ?
what is X ? ○ A) 2-methyl-2-pentene
O A) 2-methyl-2-pentene O B) 4-methyl-1-pentene
C) 2,3-dimethyl-2-butene
OD) 3-methyl-1-pentene
——————————————————————————————————————
10 The $S_{ m N}2$ reaction of 1-chloro-3-methylbutane with sodium methoxide is relatively slow, but can be accelerated by the addition of a small amount of NaI.
How is this catalysis best explained?
A) The sodium cation helps pull off the chloride anion
B) The iodide anion activates the methoxide nucleophile

\bigcirc C) S_N2 reaction of iodide ion converts the alkyl chloride to the more reactive alkyl iodide \bigcirc D) The NaI changes the mechanism to S_N1	
11 Which one of the following alcohols will be oxidized by Jones' reagent (CrO ₃ in 50% sulphuric acid) to a ketone having the same number of carbon ato A) 1-methylcyclohexanol B) 3,3-dimethylcyclopentanol	oms ?
○ C) 3-methyl-1-hexanol ○ D) 3-ethyl-3-hexanol	
2 What reagent would be suitable for distiguishing 1-methoxy-3-methyl-2-butene from its isomer 4-methyl-3-penten-1-ol?	
 ○ A) bromine in methylene chloride ○ B) KMnO₄ in aqueous base 	
○ C) AgNO ₃ in dilute NH ₄ OH	
O D) sodium metal suspended in hexane	
13 Synthesis of hexane-3,4-diol from <i>trans</i> -3-hexene may be accomplished in two ways:	
(i) OsO ₄ hydroxylation & (ii) C ₆ H ₅ CO ₃ H epoxidation followed by NaOH opening of the epoxide ring.	
Which of the following statements about the products from these reactions is correct? ○ A) the two methods giive the same product	
B) (i) gives a chiral isomer, (ii) gives an achiral isomer	
C) (i) gives an achiral isomer, (ii) gives a chiral isomer	
O) two different isomers are formed, but both are chiral	
14 Reaction of 1,4-dibromobutane with Mg turnings in ether gives the bis-Grignard reagent, BrMgCH ₂ CH ₂ CH ₂ CH ₂ MgBr.	
What is the product from the reaction of meso-2,3-dibromobutane with Mg under the same conditions?	
O A) trans-2-butene	
○ B) <i>cis</i> -2-butene ○ C) meso-CH ₃ CH(MgBr)CH(MgBr)CH ₃	
O D) racemic-CH ₃ CH(MgBr)CH ₃	
5 Which reagent(s) would best accomplish the following transformation? OH A) H ₃ O ⁺ & heat B) (i) HgSO ₄ in H ₂ O (ii) NaBH ₄ C) (i) B ₂ H ₆ in ether (ii) H ₂ O ₂ and base D) (i) HOBr (ii) Mg in ether	
16 Which of the following reagents would not effect the following transformation?	
A) KCl (5 molar solution)	
O B) HCl & ZnCl ₂	
○ C) SOCl ₂ ○ D) PCl ₃	
7 What will be the chief product from the following reaction sequence? OH (II) C _R H _R CO ₂ H ?	
CO COO COO COO COO COO COO COO COO COO	
A B C O D	
18	
I OH ⁽⁻⁾ II CH ₃ CO ₂ ⁽⁻⁾ III HO ₂ ⁽⁻⁾ IV H ₂ O The above molecules and ions are all nucleophiles. What is the relative order of their reactivity in an S_N 2 reaction with ethyl bromide? \bigcirc A) I > II > III > IV \bigcirc B) IV> III > II > I \bigcirc C) When $I_1 = I_2 = I_3 = I_4$	
The above molecules and ions are all nucleophiles. What is the relative order of their reactivity in an S_N 2 reaction with ethyl bromide? \bigcirc A) $I > II > IIV$	

I X = F II X = Cl III X = Br IV X = I A) I > II > III > IV B) IV > III > II > I C) C) III > I > II > IV D) II > III > IV > I
20 Which of the following does not convert a 1°-hydroxyl group into a good leaving group for a S _N 2 reaction? ○ A) SOCl ₂ ○ B) CH ₃ SO ₂ Cl ○ C) PBr ₃ ○ D) NaI
21 How is the following reaction best classified? (CH ₃) ₃ CBr + (CH ₃ CH ₂) ₃ N> (CH ₃) ₂ C=CH ₂ + (CH ₃ CH ₂) ₃ NH ⁽⁺⁾ Br ⁽⁻⁾ A) S _N 2 substitution B) E2 elimination C) electrophilic addition D) cationic rearrangement
22 Which of the following isomeric chlorides will undergo S _N 2 substitution most resdily? ○ A) 4-chloro-1-butene ○ B) 1-chloro-1-butene (cis or trans) ○ C) 1-chloro-2-butene (cis or trans) ○ D) 2-chloro-1-butene
23 Which reagent would be best for achieving an E2 elimination of 3-chloropentane? A) C ₂ H ₅ ONa B) CH ₃ CO ₂ Na C) NaHCO ₃ D) NaI
24 Which reaction conditions would be best for the synthesis of isobutyl <i>sec</i> -butyl ether CH ₃ CH ₂ CH(CH ₃)-O-CH ₂ CH(CH ₃) ₂ ? A) (CH ₃) ₂ CHCH ₂ OH + H ₂ SO ₄ + heat B) CH ₃ CH ₂ CH(CH ₃)OH + H ₂ SO ₄ + heat C) CH ₃ CH ₂ CH(CH ₃)ONa + (CH ₃) ₂ CHCH ₂ Br D) (CH ₃) ₂ CHCH ₂ ONa + CH ₃ CH ₂ CH(CH ₃)Br
25 A chiral C ₅ H ₁₀ O ether reacts with hot HI to give a C ₅ H ₁₀ I ₂ product Theatment of this with hot KOH in ethanol produces 1,3-pentadiene. What is the structure of the original ether? A B C D O O O
26 A C ₇ H ₁₃ Br compound reacts with KOH in ethanol to form 3-methylcyclohexene as the major product. What is a likely structure for the starting alkyl bromide? A) cis-4-methylcyclohexyl bromide B) trans-3-methylcyclohexyl bromide C) cis-2-methylcyclohexyl bromide D) trans-2-methylcyclohexyl bromide
27 A synthesis of 2,5-dimethyl-2-hexanol from 2-methylpropene requires the formation of two four-carbon intermediates, X and Y . These intermediates combine to give the desired product after the usual hydrolysis work-up. Select appropriate methods of preparing X and Y from 2-methylpropene A) X add HBr, then react with Mg in ether Y add water, acid-catalysis B) X add HBr (peroxides), then react with Mg in ether Y react with C ₆ H ₅ CO ₃ H in CH ₂ Cl ₂ C) X add HOBr Y add B ₂ H ₆ in ether, then NaOH D) X add HOBr Y add HBr (peroxides) ,then react with Mg in ether
28 All of the following alkyl bromides react by S _N 2 substitution when treated with sodium cyanide in methanol. Which one does not undergo an inversion of configuration? ○ A) (R)-1-bromo-2-methylbutane ○ B) (S)-2-bromo-3-methylbutane ○ C) (R)-1-bromo-3,3-dimethylcyclohexane

\bigcirc	D)	cis-4-ethyl-	1-bromocy	clohexane
\sim	ν	cis + curyr	1 bronnoc	CIOIICAUII

29 The structures of two 3°-bicyclic chlorides (I and II) are shown below.

Which of the following statements is correct?

- A) on treatment with KOH in ethanol, both compounds undergo E2 elimination.
- O B) on treatment with KOH in ethanol, I undergoes substitution and II undergoes eleimination.
- C) I is more reactive than II for both substitution and eleimination
- O D) II is more reactive than I for both substitution and eleimination

30 Reaction of (R)-2-chloro-4-methylpentane with excess NaI in acetone gives racemic 2-iodo-4-methylpentane

How can this be explained?

- A) the reaction mechanism changes to S_N1
- O B) the reaction proceeds via a rapidly inverting radical intermediate
- \bigcirc C) the substitution is S_N 2, but repeated attack by iodide anion (with inversion) leads to racemization
- O D) iodide anion preferentially attacks chlorine, giving a rapidly inverting carbanion intermediate
- 31 Azide anion is a very good nucleophile. Predict the major product from the following reaction.

32 What is the chief product from the following reaction?

33 Consider the $S_N{\bf 1}$ solvolysis of the following 1°-alkyl chlorides in aqueous ethanol.

 $\textbf{I} \ \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{Cl} \ \ \textbf{II} \ \text{CH}_2 \text{=} \text{CHCH}_2 \text{Cl} \ \ \textbf{III} \ \text{CH}_3 \text{OCH}_2 \text{Cl} \ \ \textbf{IV} \ \text{CF}_3 \text{CF}_2 \text{CH}_2 \text{Cl}$

What is the order of decreasing reactivity?

- \bigcirc A) III > II > I > IV
- \bigcirc B) II > I > III > IV
- \bigcirc C) IV > III > II > I
- \bigcirc D) I > II > III > IV
- 34 In the S_N2 reaction of iodide ion with (CH₃)₂CHCH₂CH₂X what is the order of decreasing reactivity for the following X substituents?

 $IX = -OH \quad IIX = CH_3CO_2 - \quad IIIX = CF_3SO_3 - \quad IVX = CCl_3CO_2 - \quad IVX = CCl_3CO_$

- \bigcirc A) I > II > III > IV
- \bigcirc B) IV > III > II > I
- \bigcirc C) III > II > IV > I
- \bigcirc D) III > IV > II > I
- 35 A C₆H₁₄O chiral alcohol is converted to a bromide by treatment with PBr₃.

Reaction of this bromide, first with Mg in ether, followed by quenching in 0.1 N HCl produces an achiral C₆H₁₄ hydrocarbon.

Which of the following is the original alcohol.?

- A) 2-ethyl-1-butanol.
- O B) 4-methyl-1-pentanol.
- C) 3-methyl-3-pentanol.
- O D) 3-methyl-1-pentanol.
- 36 Which of the following reaction sequences would best serve to convert 2-methyl-1-bromopropane to 4-methyl-1-iodopentane?
- \bigcirc A) (i) Mg in ether; .(ii) ethylene oxide (C₂H₄O); (iii) HI & heat
- O B) (i) NaC≡CH in ether; .(ii) H₂ + Lindlar catalyst; (iii) HI
- \bigcirc C) (i) KOH in alcohol; . (ii) C₆H₅CO₃H in CH₂Cl₂; (iii) NaC=CH in ether; (iv) 2 H₂ + Pt catalyst
- \bigcirc D) (i) NaC=CH in ether; .(ii) H₃O⁺ + HgSO₄; (iii) HI & heat
- 37 Which of the following organic halides will undergo an E2 elimination on heating with KOH in alcohol?
- A) 2,2-dimethyl-1-bromopropane
- O B) 2,2-dimethyl-1-bromocyclohexane

2/6/2016 6:48 PM 4 of 7

\circ	C) benzyl	chloride	(C_6H_5)	CH ₂ Cl
_				

O D) 2,5-dimethyl-1-bromobenzene

 $\textbf{38} \text{ A chiral } C_7H_{16}O_2 \text{ diol is oxidized by PCC in } CH_2Cl_2 \text{ to an achiral } C_7H_{12}O_2 \text{ compound.}$

Which of the following would satisfy these facts?

39 What is the product from the acid catalyzed addition of methanol to 2,2-diethyloxirane?

- A) 3,3-dimethoxypentane
- O B) 2-ethyl-1-methoxy-1-butanol
- O C) 2-ethyl-1-methoxy-2-butanol
- O D) 2-ethyl-2-methoxy-1-butanol

40 Which of the following is the product from ethanol addition to dihydropyran (shown on the left below)?

41 What product(s) are expected from the following reaction?

- O A) 2 CH₃CH₂I
- O B) 2 ICH₂CH₂OH
- O C) 2 ICH2CH2I
- O D) CH₃CH₂I + CH₃CH₂OH

42 Which of the following is the most likely product of this Diels-Alder reaction?

43 Reaction of 1,1-dibromopentane with three equivalents of NaNH2 in ether is followed by treatment with 0.1M HCl at 0° C.

What is the product?

- O A) cyclopentene.
- O B) 1,2-pentadiene.
- O C) 2-pentyne.
- O D) 1-pentyne.

44 Which of the following reagents and conditions would best serve to convert 1-butyne to 1-bromo-1-butene?

- O A) 1 equivalent of HBr, no peroxides.
- O B) 1 equivalent of HBr, with peroxides.
- O C) 1 equivalent of Br₂, followed by 1 equivalent of KOH.
- O D) 2 equivalents of HBr, followed by 1 equivalent of KOH.

45 Which of the following reagents would be best for oxidizing a 1°-alcohol to an aldehyde?

- A) H₃PO₄
- O B) PCC in CH₂Cl₂
- \bigcirc C) Jones' reagent (H₂CrO₄)
- O D) OsO₄

46 If the rate of reaction of [0.1 M] sodium cyanide with [0.1M] 1-bromoethane is 1.4 x 10⁻⁴,

what effect will an increase in NaCN concentration to [0.3] and alkyl bromide concentration to [0.2] have on the overall reaction rate?

- O A) increase by 2 times
- O B) increase by 3 times
- O C) iincrease by 6 times

0	D)	increase	by	1.5	times
\sim	$\boldsymbol{\nu}_{l}$	mercuse	Uy	1.0	tillica

47 A chiral C₅H₁₀O alcohol is reduced by catalytic hydrogenation to an achiral C₅H₁₂O alcohol.

The original alcohol is oxidized by activated MnO_2 to an achiral carbonyl compound (C_5H_8O)

Which of the following might be the chiral alcohol?

- O A) 1-penten-3-ol
- O B) 4-penten-2-ol
- O C) 3-methyl-2-buten-1-ol
- O D) 2-methyl-2-buten-1-ol
- $\textbf{48} \text{ A water soluble } C_6H_{14}O_2 \text{ compound is oxidized by lead tetraacetate (or periodic acid) to a single } C_3H_6O \text{ carbonyl compound.}$

Which of the following would satisfy this fact?

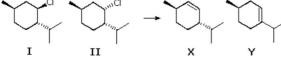
- O A) meso-2,3-dimethoxybutane
- O B) 1,2-diethoxyethane
- O C) meso-2,5-hexanediol
- O D) meso-3,4-hexanediol
- 49 Which of the following is the most likely product from the reaction illustrated by the curved arrows in the formula on the left?

50 Which of the following ethers is unlikely to be cleaved by hot conc. HBr?

$$\begin{array}{c|cccc} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$$

- 51 What reagents and conditions are used for the Simmons-Smith reaction?
- O A) CH₃I + Mg in ether
- \bigcirc B) CH₂I₂ + Zn (Cu) in ether
- \bigcirc C) BrCH₂CH₂Br + Zn in ether
- O D) CBr₄ + Zn (Cu) in ether
- 52 The Lucas test is used to distinguish small (7 or fewer carbons) 1°, 2° and 3° -alcohols.

The alcohol to be tested is added to a solution of anhydrous $ZnCl_2$ in conc. HCl at room temperature.


Which of the following statements is not correct?

- O A) 1°-alcohols dissolve, but do not react
- O B) 3°-alcohols react quickly to give an insoluble alkyl chloride
- O C) 3°-alcohols rapidly dehydrate, and the gaseous alkene bubbles out of the test solution
- O D) 2°-alcohols dissolve and react slowly to give an insoluble alkyl chloride
- $53 \text{ A C}_6H_{12}O$ compound does not react with Br_2 in CCl_4 , produces a flammable gas on treatment with LiAlH₄, and reacts with H_2CrO_4 changing the color from orange to green

Which of the following compounds best agrees with these facts?

- O A) 1-methylcyclopentanol
- O B) methoxycyclopentane
- C) 2-cyclopropyl-2-propanol
- O D) 2-cyclobutylethanol
- 54 Stereoisomers I and II undergo E2 elimination on treatment with sodium ethoxide in ethanol.

One isomer reacts 500 times faster than the other. Also, one isomer gives \mathbf{X} as the only product, whereas the other gives \mathbf{Y} together with some \mathbf{X} Which of the following statements provides the best assignment of \mathbf{I} and \mathbf{II} ?

- O A) II reacts faster and gives both Y & X
- O B) II reacts faster and gives only X
- O C) I reacts faster and gives both Y & X
- \bigcirc D) I reacts faster and gives only X

https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/questions/pr...

organic problems

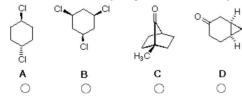
Check Answers	Reset/Clear
	View Answers

Stereochemistry

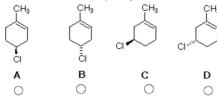
Note, the term stereogenic center is used analogously to chiral center.
1. The spatial orientation of the atoms of a molecule is called its what? ○ A) constitution ○ B) configuration ○ C) handedness ○ D) composition
2. An object that has no element of symmetry is called what? ○ A) tetrahedral ○ B) achiral ○ C) symmetric ○ D) asymmetric
3 Stereoisomers differ from each other in what respect? (A) composition. (B) constitution (C) configuration (D) steric hindrance
4 Which of the following must be true for an optically active compound? ○ A) the molecular configuration is achiral ○ B) the molecular configuration is chiral ○ C) the compound is a racemic mixture of enantiomers ○ D) the molecular configuration must have two or more stereogenic centers
5 Enantiomers are? A) stereoisomers having non-identical mirror image configurations B) stereoisomers that do not have non-identical mirror image configurations C) stereoisomers having a mirror plane of symmetry D) achiral stereoisomers
6 Which conformation of cyclohexane has a C ₃ axis of symmetry? ○ A) boat ○ B) twist boat ○ C) chair ○ D) envelope
7 The following compound has how many stereogenic centers? CH ₃ Cl CH ₃
9 Which of the following is (R)-3-hexanol? C ₂ H ₅ H H C ₂ H ₅ OH C ₂ H ₅ H C ₃ H ₇ A B C D 10 Which two Fischer formulas represent a pair of enantiomers? CH ₃ CH ₃ C ₂ H ₅ CH ₃ HO—H H—CI CI—H HO—H CH ₄ HO—H HO—H CI—H CH ₅ C ₂ H ₅ C ₂ H ₅ C ₃ H ₇ I II III IV A) I & II B) III & IV

0	C)	Ιδ	& l	V
\bigcirc	D)	TT	ρ.	тт

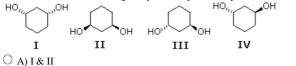
11 Consider the Fischer projection formula for (S)-2-chlorobutane


Which of the following changes does not convert this structure to the (R)-enantiomer?

- A) rotation 180° in the plane of the paper (or screen)
- O B) flipping the structure over (a 180° rotation out of the plane)
- O C) exchanging the two vertical substituents (i.e. top and bottom)
- O D) exchanging the two horizontal substituents (i.e. right and left)
- 12 Which of the following represents (E)-3,6-dichloro-6-methyl-3-heptene?


 $\textbf{13} \ \text{Designate the CIP priority order of the following } C_5H_{11}\text{- groups.} \ (Lowest < Highest priority order)$

 $\textbf{I} \ CH_{3}(CH_{2})_{4} - \ \textbf{II} \ (CH_{3})_{3}CCH_{2} - \ \textbf{III} \ C_{3}H_{7}CH(CH_{3}) - \ \textbf{IV} \ (CH_{3})_{2}CHCH_{2}CH_{2} - \\$


- \bigcirc A) I < II < III < IV
- \bigcirc B) IV < III < II < I
- \bigcirc C) I < IV < II < III
- \bigcirc D) III < II < IV < I
- 14 Which of the following compounds has two stereogenic centers (asymmetric carbons)?

15 Which of the following compounds is (S)-4-chloro-1-methylcyclohexene?

16 Which two of the following compounds represents a pair of enantiomers?

- O B) II & III
- O C) III & IV
- O D) II & IV
- 17 Which of the following is properly classified as a meso compound?

18 When HOBr adds to 4-methylcyclopentene, how many new stereogenic centers are formed?

- O A) 1
- O B) 2
- O C) 3
- O D) 4

19 Which of the following isomeric dienes is chiral?

organic	problems
organic	procrems

○ A) 2,3-pentadiene○ B) 3-methyl-1,2-butadiene

O C) 2-methyl-1,3-butadiene

O D) none, all are achiral

20 Which two of the following compounds are diastereomers?

O II & IV

O III & IV

○ I & III

21 Two equivalents of bromine add to one equivalent of 1,7-octadiene.

How many stereoisomeric tetrabromides will be formed?

O A) 1

O B) 2

O C) 3

O D) 4

22 Two equivalents of OsO₄ hydroxylate one equivalent of 1,5-cyclooctadiene.

How many stereoisomeric cyclooctane-1,2,5,6-tetraols will be formed?

O A) 1

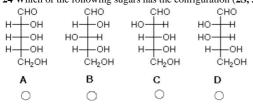
O B) 2

O C) 3

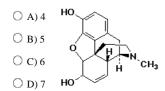
O D) 4

23 The optically active bromohydrin (1R, 2R)-2-bromocyclohexanol reacts with base to produce cyclohexene oxide ($C_6H_{10}O$).

Which of the following statements is true?


O A) a racemic product is formed

B) the observed optical rotation changes sign


 \bigcirc C) the observed optical rotation does not change sign

O D) the product is achiral

24 Which of the following sugars has the configuration (2S, 3R, 4R)?

25 How many stereogenic carbon centers are there in morphine, structure shown below?

26 Pure (S)-2-butanol has a specific rotation of +13.52 degrees.

You have made and purified a sample that has a calculated specific rotation of +6.76 degrees.

What can you conclude about this sample?

O A) the sample has completely racemized

O B) 50% the sample has rearranged into a meso isomer

O C) 50% of the sample has racemized

O D) 75% of the sample has racemized

27 How many stereoisomers of (CH₃)₂CHCH=CHCH₂CH(OH)CH₂Br are possible?

O A) 2

O B) 3

O C) 4

O D) 5

ganic	

O A) diastereomers

B) enantiomersC) tautomers

O D) conformers

29

The drawing on the right shows that *cis*-1,2-dichlorocyclohexane is chiral. Efforts to resolve this compound fail. Why?

28 If two isomers have been classified correctly as epimers, they may also be called...?

○ A) the cis and trans isomers rapidly interconvert.

O B) the compound is actually a meso structure.

O C) the chair conformers rapidly interconvert producing a racemic mixture.

O D) methods for resolving alkyl chlorides are not available.

30 Which of the following statements must be true for two pure chiral isomers?

O A) they must be enantiomers

O B) they must be diastereomers

O C) they must be stereoisomers

O D) they must be optically active

31 Which two of the following compounds are identical?

32

The structural formula on the right is that of camphor. Which of the following statements is correct?

O A) This compound has two stereogenic centers and exists as a pair of enantiomers.

O B) This compound is achiral.

O C) This compound has three stereogenic centers and exists as a pair of enantiomers and a meso isomer.

O D) This compound does not have an enantiomer

33 Which of the following statements is true for a pair of diastereomers?

A) they will have identical physiological properties.

O B) they will have specific rotations of opposite sign.

 \bigcirc C) they will have identical chemical properties (e.g. reactivity)

O D) they will have different physical properties.

34 Which of the following descriptive terms **would never** be applied to a pair of stereoisomers?

O A) enantiomers

O B) tautomers

O C) diastereomers

O D) epimers

35 What kind of reagent would be needed to resolve a racemic amine, such as 2-aminobutane?

A) the pure optically active amine to serve as a template for crystallization.

O B) an achiral carboxylic acid to give a racemic mixture of amine salts.

O C) an enantiomerically pure chiral carboxylic acid to give a diastereomeric mixture of amine salts.

O D) a racemic chiral carboxylic acid to give a complete mixture of isomeric amine salts.

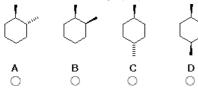
36 What common symmetry elements if any are found in the stable chair conformer of *trans*-1,4-dichlorocyclohexane?

O A) a single mirror plane and a C₂ rotational axis.

O B) a C₃ rotational axis but no mirror plane.

O C) two orthogonal mirror planes and a C₂ rotational axis.

 \bigcirc D) a single C₂ rotational axis but no mirror plane.


 37 What common symmetry elements if any are found in the stable chair conformer of <i>trans</i>-1,2-dichlorocyclohexane? A) a single mirror plane and a C₂ rotational axis. B) a single mirror plane and a C₃ rotational axis. C) two orthogonal mirror planes and a C₂ rotational axis. D) a single C₂ rotational axis but no mirror plane.
38 Reaction of 3-methyl-1,4-cycloheptadiene with excess perbenzoic acid (C ₆ H ₅ CO ₃ H) forms a diepoxide product. How many stereoisomers, counting enantiomers, are expected from this reaction? ○ A) 4 (two pairs of enantiomers) ○ B) 4 (two meso compounds and a pair of enantiomers) ○ C) 5 (two pairs of enantiomers and a meso compound) ○ D) 6 (two pairs of enantiomers and two meso compounds)
39 The antimalarial alkaloid quinine, C ₂₀ H ₂₄ N ₂ O ₂ , is optically active. An ethanol solution of 8g quinine in 100mL displays a rotation of -13.6° in a 1dm polarimeter tube. What is the specific rotation of quinine? ○ A) -85° ○ B) -170° ○ C) -43° ○ D) -26°
40 A C ₇ H ₁₄ O optically active alcohol is oxidized by Jones' reagent to an optically inactive (achiral) ketone. Which of the following compounds meets these facts? OH OH OH OH OH OH OH OH OH O
41 Which of the following compounds has a prochiral methylene group (i.e. the hydrogen atoms are diastereotopic)? ○ A) propane, CH ₃ CH ₂ CH ₃ ○ B) cyclopropane, (CH ₂) ₃ ○ C) 2-methylpropene, CH ₂ =C(CH ₃) ₂ ○ D) ethanol, CH ₃ CH ₂ OH
42 The thermal electrocyclic closure of (2E,4Z,6E)-2,4,6-octatriene gives which of the following? A) cis-5,6-dimethyl-1,3-cyclohexadiene B) trans-5,6-dimethyl-1,3-cyclohexadiene C) cis-3,6-dimethyl-1,4-cyclohexadiene D) cis-3,6-dimethyl-1,4-cyclohexadiene
43 The Cope rearrangement, [3,3]-sigmatropic shift, of <i>meso</i> -3,4-dimethyl-1,5-hexadiene gives which of the following? ○ A) 1,7-octadiene ○ B) (2Z,6Z)-2,6-octadiene ○ C) (2E,6Z)-2,6-octadiene ○ D) (2E,6E)-2,6-octadiene
44 Which is the expected product from the following Diels-Alder reaction? CH ₃ H CN CH ₃ CN CN CH ₃ CN CN CH ₃ CN CN CN CN CN CN CN CN CN C
45 Which of the following structures represents a chiral compound? CH ₃

46 Which of the following compounds has a S configuration?

47 How should the following structure of polypropylene be classified?

- O A) isotactic
- O B) syndiotactic
- O C) atactic
- O D) head-to-head

48 Which of the following C_8H_{16} isomers is thermodynamically most stable?

- 49 Which of the following statements is not an essential feature of an optically active compound?
- A) the molecules of an optically active compound will be dissymetric or asymmetric.
- O B) the molecules of an optically active molecule must have at least one stereogenic site.
- O C) an optically active compound's molecular configuration will not be identical with its mirror image.
- \bigcirc D) an optically active compound will have at least one stereoisomer.
- 50 Which of the following statements is not correct?
- O A) a pair of enantiomeric compounds will have the same melting point.
- \bigcirc B) a pair of enantiomeric compounds will have the same solubility in ethanol.
- O C) a pair of enantiomeric compounds will have exactly the same functional groups.
- O D) a pair of enantiomeric compounds will have identical optical rotations.
- 51 Which of the structures on the right, if any, represents syndiotactic polyacrylonitrile?

D None of these structures

52 Examine the compound on the right. How many stereoisomers having this constitution are possible?

A 2 **B** 4

D 8

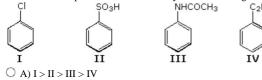
53 Which of the following is (2R, 3S)-2,3-pentanediol?

C 6

Check Answers

Reset/Clear

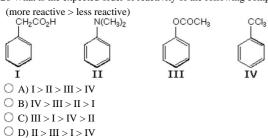
View Answers


organic problems

Structure and Reactivity of Aromatic Compounds
1. Which of the following C_6H_6 compounds has a single set of structurally equivalent hydrogen atoms?
I II III IV V VI
2. Which of the following compounds would be not be considered aromatic in its behavior?
A B C D O O O
3 How many isomeric tribromobenzenes exist? A) none! (such a compound cannot exist) B) 1 C) 2 D) 3
4 A C ₈ H ₁₀ hydrocarbon is nitrated by HNO ₃ and sulfuric acid. Two, and only two, C ₈ H ₉ NO ₂ isomers are obtained. Which of the following fits this evidence? A) ethylbenzene B) ortho-xylene C) meta-xylene D) para-xylene
5 Which of the following is an important reactive electrophile in aromatic ring nitration? O A) NO ₂ ⁽⁺⁾ O B) NO ⁽⁺⁾ O C) N ₂ ⁽⁺⁾ O D) N ₂ O ⁽⁺⁾
6 Bromination of <i>meta</i> -chloronitrobenzene may produce how many C ₆ H ₃ ClBrNO ₂ isomers? ○ A) 1 ○ B) 2 ○ C) 3 ○ D) 4
7 What C ₉ H ₁₂ hydrocarbon would give a single C ₉ H ₁₁ SO ₃ H product on sulfonation?
A B C D O O O
8 How many isomeric dinitrobenzoic acids can exist? C ₆ H ₃ (NO ₂) ₂ CO ₂ H A) 3 B) 4 C) 5 D) 6
9 Which of the following compounds is phenanthrene?
A B C D O O O

10 Which of th	e following is ph	enol?		
\bigcirc A) C ₆ H ₅ O		enor:		
O B) C ₆ H ₅ Cl				
O C) C ₆ H ₅ C(
O D) C ₆ H ₅ O	СН3			
	nitrobenzene III III > IV	y of the following I benzene IV pho		lectrophilic substitution? (more reactive > less reactive)
O C) I > III >				
O D) IV > I >				
	ene II aniline II III > IV	y of the following II ethylbenzene		lectrophilic substitution? (more reactive > less reactive)
O C) I > III >				
O D) II > I >				
13 Which of th	e following struc	tures most closely	y represents an in	termediate in the electrophilic bromination of <i>para</i> -xylene?
н₃с∖јн	ÇH₃	CH₃ I H	H CH3	
E⊕ I Br	Br	⊕ FBr ⊦	+ Pr ⊕ Y Br	
Y.	H ^C CH ₃	Y.	Y.	
CH₃		CH ₃	CH₃	
A	В О	C O	D O	
○ A) I > II > ○ B) III > II : ○ C) I > II > ○ D) I > IV >	III > IV > IV > I IV > III	H ₂ Cl III C ₆ H ₅ C	HCI2 IV C ₆ H ₅ C	ACI3
○ A) -N=O○ B) -OCH₃○ C) -COCH		ene ring substitue	nts is deactivatin	g but ortho-para directing?
O D) -NO ₂				
16 Which of th	e following comp	oounds forms orth	no-benzenedicarb	oxylic acid when oxidized by hot aqueous potassium permanganate?
a k				
A	В	C	D	
Ô	0	c ()	Ö	
17 Which of th ○ A) (CH ₃) ₃ ⁴ ○ B) CH ₂ =C ○ C) CH ₃ CH ○ D) CH ₂ =C	CCI HCH ₂ CI I ₂ CI	nic chlorides will	not give a Friede	l-Craft alkylation product when heated with benzene and AlCl ₃ .
				d by heating with 50% sulfuric acid produces <i>ortho</i> -bromotoluene.
Which of the		ediates leads to th CH ₃	is product?	
H ₃ C H Br	CH₃ Br		H J I's	
(H)	(±)	⊕ Br ⊦	1 (⊕)	
Ύ so₃h	н‱во₃н	Т 80₃Н	Υ so₃h	
A	В	С	D	
0	0	0	0	

19 Which of the following is the major product from sulfonation of α -tetralone?


- 20 Which of the following substituents on a benzene ring is ortho-para directing?
- O A) -OCOCH₃
- O B) -COCH₃
- O C) -CO2H
- OD)-CN
- 21 Which of the following compounds reacts rapidly with Br2 in the dark?
- O A) benzene
- O B) anisole C₆H₅OCH₃
- O C) acetophenone C₆H₅COCH₃
- O D) none of the above
- 22 What is the expected order of reactivity of the following compounds in electrophilic nitration? (more reactive > less reactive)

- \bigcirc B) IV > III > II > I
- \bigcirc C) III > IV > I > II
- \bigcirc D) II > I > IV > III
- 23 Which of the following is the major product from bromination of meta-nitrobenzenesulfonic acid?

24 Which of the following is the major product from this reaction?

- 25 Which of the following reaction sequences would be best for converting para-bromoanisole to ortho-ethylanisole?
- \bigcirc A) (i) H₂ & Pt catalyst (ii) C₂H₅Cl & AlCl₃
- O B) (i) Mg in ether (ii) aqueous alcohol (iii) C₂H₅Cl & AlCl₃
- \bigcirc C) (i) Mg in ether $\,$ (ii) $C_2H_5Cl\ \&\ AlCl_3$
- O D) (i) C₂H₅Cl & AlCl₃ (ii) Mg in ether (iii) aqueous alcohol
- 26 What is the expected order of reactivity of the following compounds in electrophilic chlorination (Cl₂ + FeCl₃)?

3 of 7 2/6/2016 6:48 PM

27 When Friedel-Craft alkylation of benzene is carried out with 1 equiv. of <i>tert</i> -benono-substitution product. Why doesn't all the benzene react to give <i>tert</i> -butylbenzene (the mono-substitution A) the <i>tert</i> -butyl substituent activates the benzene ring to further substitution. B) the reaction is bimolecular, so two <i>tert</i> -butyl chloride molecules combine C) the <i>tert</i> -butyl substituent is large and favors reaction at the para-position. D) the disubstituted product is favored in equilibrium with the mono-substitution.	with one benzene molecule.
28 When <i>para</i> -bromotoluene is treated with NaNH ₂ in ether, the bromine is lost a What kind of intermediate would account for this? ○ A) a charge delocalized anion formed by nucleophilic addition of NH ₂ ⁽⁻⁾ to th ○ B) a charge delocalized anion formed by abstraction of a methyl proton by th ○ C) an aryl cation formed by loss of bromide anion. ○ D) a benzyne species formed by elimination of HBr.	ne benzene ring
29 How might one best accomplish the following synthesis? ? H ₂ N O A) (i) C ₄ H ₉ Cl + AlCl ₃ (ii) HNO ₃ & heat (iii) excess H ₂ & Pt catalyst O B) (i) HNO ₃ & heat (ii) C ₄ H ₉ Cl + AlCl ₃ (iii) excess H ₂ & Pt catalyst O C) (i) C ₃ H ₇ COCl + AlCl ₃ (ii) HNO ₃ & heat (iii) excess H ₂ & Pt catalyst	
 ○ D) (i) HNO₃ & heat (ii) C₃H₇COCl + AlCl₃ (iii) excess H₂ & Pt catalyst 30 Sulfonation of naphthalene by conc. sulfuric acid produces the 1-sulfonic acid Which of the following statements is not true? ○ A) the 2- sulfonic acid is kinetically favored ○ B) sulfonation is a reversible reaction ○ C) the 2- sulfonic acid is thermodynamically favored (more stable) ○ D) electrophilic attack at C-1 is favored over attack at C-2 	at 120 °C and the 2-sulfonic acid at 160 °C.
31 Which of the following is the likely outcome from this reaction? H ₂ SO ₄ Catalyst Or O O O O O O O O O O O O	
The mechanism on the right illustrates the breakdown of an intermediate. Which of the following statements about this mechanism is correct ? A) the organic product is anisole (methoxybenzene). B) the organic product is bromobenzene. C) HBr is released in the reaction. D) water functions as a base.	Br CH ₃
33 Which of the following heterocyclic compounds would have aromatic characters with the following heterocyclic compounds would have aromatic characters with the following heterocyclic compounds would have aromatic characters with the following heterocyclic compounds would have aromatic characters with the following heterocyclic compounds would have aromatic characters with the following heterocyclic compounds would have aromatic characters with the following heterocyclic compounds would have aromatic characters with the following heterocyclic compounds would have aromatic characters with the following heterocyclic compounds would have aromatic characters with the following heterocyclic compounds would have aromatic characters with the following heterocyclic compounds would have aromatic characters with the following heterocyclic compounds would have aromatic characters with the following heterocyclic compounds would have a second with the following heterocyclic compounds would have a second with the following heterocyclic compounds would have a second with the following heterocyclic compounds would have a second with the following heterocyclic compounds would have a second with the following heterocyclic compounds would have a second with the following heterocyclic compounds with the foll	ter?
A B C D O O O	
34 C ₆ H ₅ OCH ₂ CH ₂ Br is heated with Mg in ether and then quenched in cold 10% What organic product will be obtained by ether extraction of the aqueous acid? ○ A) C ₆ H ₅ OCH ₂ CH ₃ ○ B) C ₆ H ₅ OCH ₂ CH ₂ OH ○ C) C ₆ H ₅ OH ○ D) C ₆ H ₆	HCl.

35 A $C_9H_{12}O$ compound is reacted with a solution of lithium in liquid ammonia. After evaporation of the ammonia, the residue is warmed with 10% HCl and extracted with ether. The product is identified as 2-cyclohexenone. Which of the following might be the starting compound?
O A) $C_6H_5OC_3H_7$
O B) $C_6H_5CH_2CH_2CH_2OH$

- O C) C₆H₅CH₂CH₂OCH₃
- O D) C₆H₅CH₂CH(OH)CH₃

- 36 Which of the following procedures would be best for the preparation of phenyl benzyl ether? $C_6H_5OCH_2C_6H_5$
- O A) C₆H₅Cl + C₆H₅CH₂O⁽⁻⁾ Na⁽⁺⁾
- O B) C₆H₅O⁽⁻⁾ Na⁽⁺⁾ + C₆H₅CH₂Cl
- O C) 2 C₆H₅Cl + Na₂O
- O D) 2 C₆H₅MgBr + CH₂O
- 37 Which of the following procedures would be best for achieving the following reaction?

- O A) (i) KOH & heat (ii) CH₃C≡C-Br
- O B) (i) KMnO₄ & heat (ii) CH₃C \equiv C⁽⁻⁾ Na⁽⁺⁾ (iii) excess H₂O
- \bigcirc C) (i) NBS in CCl₄ & heat (ii) CH₃C \equiv C⁽⁻⁾ Na⁽⁺⁾
- O D) (i) Mg in ether (ii) CH₃C≡CBr (iii) excess H₃PO₄
- 38 Which of the following procedures would be best for achieving the following reaction?

- \bigcirc A) (i) Br₂ + FeBr₃ (ii) KMnO₄ & heat (iii) HNO₃ & H₄SO₄
- \bigcirc B) (i) KMnO₄ & heat (ii) Br₂ + FeBr₃ (iii) HNO₃ & H₄SO₄
- O C) (i) NBS in CCl₄ & heat (ii) KMnO₄ & heat (iii) HNO₃ & H₄SO₄
- O D) (i) NBS in CCl₄ & heat (ii) NaNO₂ (iii) KMnO₄ & heat
- 39 Which of the following statements best evaluates the reaction shown below?

- A) a Grignard reagent from the dihalobenzene adds to anthracene, followed by nucleophilic displacement of fluoride anion to form the product..
- O B) magnesium reduces anthracene to a reactive dianion that bonds to the dihalobenzene.
- O C) a Grignard reagent from the dihalobenzene metalates the anthracene, and this nucleophile adds to the remaining fluorobenzene.
- D) a Grignard reagent from the dihalobenzene decomposes to benzyne, which then cycloadds to anthracene.
- **40** Which reaction sequence would be best for preparing 3,5-dibromoaniline from nitrobenzene?
- O A) (i) 3 H₂ & Pt or Ni catalyst (ii) 2 Br₂ in ether
- \bigcirc B) (i) excess Br₂ + FeBr₃ & heat (ii) 3 H₂ & Pt or Ni catalyst
- O C) (i) 3 H₂ & Pt or Ni catalyst (ii) H₂SO₄ & heat (iii) excess HBr
- O D) (i) H₂SO₄ & heat (ii) excess Br₂ + FeBr₃ & heat (iii) 3 H₂ & Pt or Ni catalyst
- 41 Which of the following carboxylic acids could be resolved by reaction with an enantiomerically pure chiral amine?

- 42 How could one prepare 3,4,5-tribromoaniline from para-nitroaniline? note: HNO₂ = NaNO₂ + 10% H₂SO₄
- \bigcirc A) (i) 3 H₂ & Pt or Ni catalyst (ii) 2 Br₂ in ether (iii) HNO₂ 0 °C (iv) H₃PO₂
- O B) (i) 3 H₂ & Pt or Ni catalyst (ii) HNO₂ 0 °C (iii) excess Cu₂Br₂ + HBr
- \bigcirc C) (i) 2 Br₂ in ether (ii) 3 H₂ & Pt or Ni catalyst (iii) HNO₂ 0 °C (iv) H₃PO₂
- O D) (i) 2 Br₂ in ether (ii) HNO₂ 0 °C (iii) Cu₂Br₂ (iv) 3 H₂ & Pt or Ni catalyst
- 43 How could one prepare 3,5-dibromophenol from para-nitroaniline? note: $HNO_2 = NaNO_2 + 10\% H_2SO_4$
- \bigcirc A) (i) 2 Br₂ in ether (ii) HNO₂ 0 °C (iii) H₃PO₂ (iv) 3 H₂ & Pt or Ni catalyst (v) HNO₂ 0 °C, then heat
- \bigcirc B) (i) 3 H₂ & Pt or Ni catalyst (ii) HNO₂ 0 °C (iii) excess Cu₂Br₂ + HBr (iv) KOH & heat
- \bigcirc C) (i) HNO₂ 0 °C, then heat (ii) 2 Br₂ in ether (iii) 3 H₂ & Pt or Ni catalyst (iv) HNO₂ 0 °C (v) Cu₂Br₂ + HBr
- \bigcirc D) (i) 2 Br₂ in ether (ii) HNO₂ 0 °C (iii) Cu₂Br₂ (iv) 3 H₂ & Pt or Ni catalyst (v) HNO₂ 0 °C, then heat
- 44 Iodination of benzene is not easily caried out. How can one prepare *para*-iodobenzoic acid from *para*-nitrotoluene? note: HNO₂ = NaNO₂ + 10% H₂SO₄
- O A) (i) Br₂ + FeBr₂ (ii) Mg in ether, then CO₂ (iii) 3 H₂ & Pt or Ni catalyst (iv) HNO₂ 0 °C (v) KI solution
- O B) (i) NBS in CCl₄ & heat (ii) NaI in acetone (iii) 3 H₂ & Pt or Ni catalyst (iv) HNO₂ 0 °C (v) H₃PO₂

(C) (i) 3 H ₂ & Pt or Ni cata	ılyst (ii) HNO ₂ 0 ℃	(iii) Cu ₂ Br ₂ + HBr	(iv) $KMnO_4$ & heat	(v) KI solution
(D) (i) KMnO, & heat (ii)	3 Ha & Pt or Ni cat	alvet (iii) HNO ₂ 0.90	(iv) KI solution	

45 An important group of comercial dyes, known as azo dyes, are prepared by a diazo coupling reaction.

What functional group characterizes an azo dye?

- O A) -N=O
- O B) –N₃
- O C) -N=N-
- O D) –NO₂

46 Which sequence of reactions would be best for preparing meta-propylaniline from benzene?

- O A) (i) HNO₃ & H₂SO₄ & heat (ii) C₃H₇COCl + AlCl₃ (iii) 5 H₂ & Pt or Ni catalyst
- O B) (i) C₃H₇COCl + AlCl₃ (ii) HNO₃ & H₂SO₄ & heat (iii) 5 H₂ & Pt or Ni catalyst
- O C) (i) C₃H₇COCl + AlCl₃ (ii) 2 H₂ & Pt or Ni catalyst (iii) HNO₃ & H₂SO₄ & heat (iv) 3 H₂ & Pt or Ni catalyst
- O D) (i) HNO₃ & H₂SO₄ & heat (ii) 3 H₂ & Pt or Ni catalyst (iii) C₃H₇COCl (iv) 2 H₂ & Pt or Ni catalyst
- 47 The insecticide DDT (C₁₄H₉Cl₅) is prepared by heating chlorobenzene with chloral (CCl₃CHO) in the presence of conc. sulfuric acid. Which of the following compounds is DDT?

48 Phenol reacts with acetone in the presence of conc. sulfuric acid to form a $C_{15}H_{16}O_2$ product.

Which of the following compounds is this product?

49 The aromatic heterocyclic base pyridine is sulfonated by heating with conc. sulfuric acid

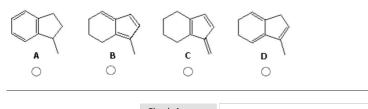
Which of the following statements about this reaction is correct? (note that in numbering the ring nitogen is #1)

- O A) pyridine reacts more rapidly than benzene and is sulfonated at C-3
- O B) pyridine reacts more rapidly than benzene and is sulfonated at C-2 & C-4
- O C) pyridine reacts more slowly than benzene and is sulfonated at C-3
- O D) pyridine reacts more slowly than benzene and is sulfonated at C-2 & C-4

50 Heating benzene in a large excess of 80% D₂SO₄ in D₂O results in what product?

- O A) C₆H₅SO₃D
- B) C₆H₅OD
- C) C₆H₅D
- \bigcirc D) C₆D₆
- 51 A solution of cyclohexene in benzene is stirred at 0 °C while concentrated sulfuric acid is added.

After washing away the acid and removing the excess benzene, what product is isolated?


- A) cyclohexylbenzene
- O B) 1-cyclohexylcyclohexene
- O C) trans-1,2-diphenylcyclohexane
- O D) 1,1-diphenylcyclohexane
- 52 Devise a series of reactions to convert benzene into *meta*-chlorobromobenzene.

Select reagents and conditions from the following table, listing them in the order of use.

1 sulfuric acid (conc.) heat	2 Cl ₂ + FeCl ₃ & heat	3 NaNO ₂ + H ₃ O ⁽⁺⁾ 0 °C	4 H ₂ Pt catalyst	5 Mg in ether
6 PBr ₃	7 H ₃ PO ₂	8 HNO ₃ (conc.) + H ₂ SO ₄ (conc.) & heat	9 Cu ₂ Br ₂ + HBr	10 (CH ₃ CO) ₂ O + pyridine

- O A) 1 then 2 then 6
- OB) 2 then 8 then 4 then 3 then 9
- O C) 8 then 4 then 10 then 2 then 3 then 9
- O D) 8 then 2 then 4 then 3 then 9

53 Which of the following isomeric hydrocarbons is most acidic?

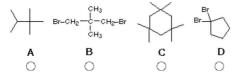
Check Answers

Reset/Clear

View Answers

organic problems

1. In the following diagram of a light wave what distance is defined as the wavelength?


1	2	/3	4	/
A				

O A) 1 to 2

Spectroscopy

- O B) 1 to 3
- O C) 1 to 4
- O D) none of the above

2. Which of the following compounds has three different sets of structurally equivalent hydrogen atoms?

3 Four major spectroscopic tools are listed below. Which makes use of the long	st wavelength radiation?

- O A) infrared
- O B) ultraviolet
- O C) visible
- O D) proton nmr

4 You have three dyes. One is green, one is blue and one is yellow

Which absorbs the shortest wavelength of visible light, and which absorbs the longest?

- A) longest = yellow; shortest = blue
- O B) longest = blue; shortest = green
- C) longest = yellow; shortest = green
- O D) longest = green; shortest = yellow

5 Of the following general statements concerning vibrational frequencies and intensities, which is incorrect.?

- O A) stretching vibrations have a higher frequency than equivalent bending vibrations.
- O B) stretching vibrations of double bonds have a higher frequency than those of equivalent single bonds.
- O C) the stretching vibration of a Y-Y bond is more intense than that of a Y-Z bond. (Y and Z are different atoms)
- O D) stretching vibrations of a Y-H bond have a higher frequency than those of a Y-Z bond. (Y and Z are heavier atoms than H)

6 Which if any of the following compounds will display spin-spin splitting in the ¹Hnmr?

- O A) (CH₃)₃COCH₃
- O B) Br(CH₂)₃Br
- O C) para-xylene, CH₃C₆H₄CH₃
- O D) none of these

7 The ¹Hnmr of 1,1-dibromoethane consists of two well-separated signals, one large and the other small.

Which of the following descriptions is correct?

- A) the large signal is a quartet and the small signal is a doublet.
- O B) the large signal is a triplet and the small signal is a singlet.
- O C) the large signal is a singlet and the small signal is a triplet.
- \bigcirc D) the large signal is a doublet and the small signal is a quartet.

8 Which spectroscopic tool would be best for distinguising a sample of 1,2,2-trichloropropane from 1,1,2-trichloropropane?

- O A) ¹Hnmr
- O B) infrared spectroscopy
- O C) ultraviolet-visible spectroscopy
- O D) mass spectrometry

9 Which spectroscopic tool would be best for distinguising a sample of 1,3-cyclohexadiene from 1,4-cyclohexadiene?

- O A) ¹Hnmr
- O B) infrared spectroscopy
- C) ultraviolet-visible spectroscopy
- O D) mass spectrometry

10 Which spectroscopic tool would be best for distinguising a sample of chlorocyclopentane from bromocyclopentane?

- O A) ¹Hnmr
- B) infrared spectroscopy

C) ultraviolet-visible spectrosco

O D) mass spectrometry

11 Which spectroscopic tool would be best for distinguising a sample of compound I from compound II?

O A) ¹Hnmr

O B) infrared spectroscopy

O C) ultraviolet-visible spectroscopy

O D) mass spectrometry

12 Combustion analysis of an organic compound shows it to be 64.3% carbon. It displays a molecular ion at m/z=112 amu in the mass spectrum. Which of the following ia a plausible molecular formula for this compound?

 \bigcirc A) C_8H_{16}

O B) C₇H₁₂O

 \bigcirc C) C₆H₈O₂

O D) C₅H₄O₃

13 An unknown compound has the following spectroscopic properties:

Mass Spectrometry: m/z 102 (very small), 87 & 43 are the largest ions

 $^{1}\text{Hnmr:}\ \delta\ 1.4\ \&\ 3.9\ ppm$ (both singlets, intensity ratio 3:2)

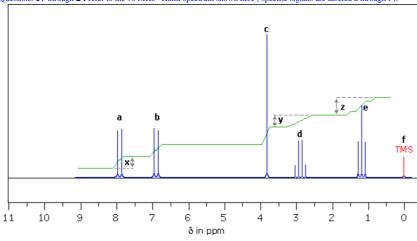
 13 Cnmr: δ 108, 64 & 25 ppm,

Infrared Spectroscopy: several strong absorptions in the 1000 to 1300 cm⁻¹ region

Which of the following is the most likely formula of this compound?

 ${\bf 14} \ Which \ type \ of \ C-H \ has \ the \ highest \ stretching \ frequency \ in \ the \ infrared \ spectrum?$

- O A) RCHO
- B) RC**H**₃
- \bigcirc C) R₂C=C**H**₂
- O D) RC≡C**H**


15 Which C=O function has the lowest stretching frequency in the infrared spectrum?

- O A) acyl chloride
- O B) aldehyde
- O C) amide
- O D) ester

16 Which hydrocarbon gives the lowest field ¹Hnmr signal?

- O A) cyclohexane
- O B) benzene
- O C) 1,4-cyclohexadiene
- O D) 1-butyne

 $Questions~17~through~24~refer~to~the~90~MHz~^1Hnmr~spectrum~shown~here~(~specific~signals~are~labeled~a~through~f~).$

17 Of all six signal groups in this spectrum, what is the multiplicity of the lowest field signal?

	https://www2.chemistry.msu.edu/faculty/reusch/virttx
O A) singlet	
O B) doublet	
O C) triplet	
O D) quartet	
18 Which of the six signal groups in this spectrum is located at th	ne highest frequency?
O A) a	io ingliest requestoy.
○ B) c	
O C) e	
○ D) f	
19 How far from the TMS reference signal is the singlet at c (δ 3.	8 ppm)?
○ A) 23.7 Hz ○ B) 23.7 MHz	
○ C) 342 Hz	
O D) 342 Hz	
20 The two sharp signals that constitute the resonance marked a h	have chemical shifts of 7.82 and 7.95
What is the coupling constant, J, for this doublet?	
○ A) 0.13 MHz ○ B) 11.7 Hz	
○ B) 11.7 Hz ○ C) 11.7 MHz	
O D) 13 Hz	
21 Which of the six signal groups in this spectrum is most shielded	ed?
O A) a	
○ B) c	
○ C) e ○ D) f	
O D) 1	
O B) doublet O C) triplet	
O D) quartet	
O D) quartet 23 The ratio of the number of hydrogens generating doublet a to t	the hydrogens generating quartet d is measued how?
 ○ D) quartet 23 The ratio of the number of hydrogens generating doublet a to t ○ A) x/y (distance in mm) 	the hydrogens generating quartet d is measued how?
 ○ D) quartet 23 The ratio of the number of hydrogens generating doublet a to t ○ A) x/y (distance in mm) ○ B) 7.88/2.85 (chemical shifts in ppm) 	the hydrogens generating quartet d is measued how?
O D) quartet 23 The ratio of the number of hydrogens generating doublet a to t A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm)	the hydrogens generating quartet d is measued how?
 ○ D) quartet 23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) ○ B) 7.88/2.85 (chemical shifts in ppm) ○ C) x/z (distance in mm) ○ D) none of the above 	
O D) quartet 23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) O B) 7.88/2.85 (chemical shifts in ppm) O C) x/z (distance in mm) O D) none of the above 24 If this spectrum is from a C₁₀H₁₂O₂ compound, having a strong S	the hydrogens generating quartet d is measued how? In a part of the hydrogens generating quartet d is measued how?
O D) quartet 23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) O B) 7.88/2.85 (chemical shifts in ppm) O C) x/z (distance in mm) O D) none of the above 24 If this spectrum is from a C₁₀H₁₂O₂ compound, having a strong S	
O D) quartet 23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) O B) 7.88/2.85 (chemical shifts in ppm) O C) x/z (distance in mm) O D) none of the above	
O D) quartet 23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) O B) 7.88/2.85 (chemical shifts in ppm) O C) x/z (distance in mm) O D) none of the above 24 If this spectrum is from a C₁₀H₁₂O₂ compound, having a strong S	
O D) quartet 23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) O B) 7.88/2.85 (chemical shifts in ppm) O C) x/z (distance in mm) O D) none of the above 24 If this spectrum is from a C₁₀H₁₂O₂ compound, having a strong S	
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong ch ₂ CH ₃ H ₂ CCH ₃ H ₂ CCH ₃ CH ₃	
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong CH ₂ CH ₃ H ₂ CCH ₃ CH ₃ CH ₃ CH ₃	
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong CH ₂ CH ₃ H ₂ CCH ₃ CH ₃ CH ₂ CH ₃ H ₂ CCH ₃ CH ₃ CH ₂ CH ₃ A B C D	
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong CH ₂ CH ₃ H ₂ CH ₃ CH ₃ CH ₂ CH ₃ H ₂ CH ₃ A B C D	ng absorption at 1680 cm ⁻¹ in the infrared, what is its likely structure?
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong CH ₂ CH ₃ H ₂ CH ₃	ng absorption at 1680 cm ⁻¹ in the infrared, what is its likely structure?
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong ch ₂ CH ₃ H ₂ CH ₃ CH ₂ CH ₃ H ₂ CH ₃ CH ₃ CH ₂ CH ₃ A B C D 25 Which statement about the nmr reference compound TMS is many characteristics. A) TMS stands for tetramethylsilane. B) all the hydrogens in TMS have the same chemical shift.	ng absorption at 1680 cm ⁻¹ in the infrared, what is its likely structure? not correct?
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong ch ₂ CH ₃ H ₂ CH ₃ CH ₃ CH ₂ CH ₃ A B C D 25 Which statement about the nmr reference compound TMS is many characteristics. A) TMS stands for tetramethylsilane. B) all the hydrogens in TMS have the same chemical shift. C) TMS is relatively unreactive with most functional groups.	ng absorption at 1680 cm ⁻¹ in the infrared, what is its likely structure? not correct?
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong CH ₂ CH ₃ H ₂ CH ₃ CH ₃ CH ₂ CH ₃ A B C D 25 Which statement about the nmr reference compound TMS is many A) TMS stands for tetramethylsilane. B) all the hydrogens in TMS have the same chemical shift.	ng absorption at 1680 cm ⁻¹ in the infrared, what is its likely structure? not correct?
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong characteristic characterist	ng absorption at 1680 cm ⁻¹ in the infrared, what is its likely structure? not correct? handling the nmr sample.
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong ch ₁₂ CH ₃ H ₂ CH ₃	ng absorption at 1680 cm ⁻¹ in the infrared, what is its likely structure? not correct? handling the nmr sample.
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong ch ₂ CH ₃ H ₂ CH ₃ CH ₃ CH ₃ CH ₃ A B C D 25 Which statement about the nmr reference compound TMS is many characteristics. A) TMS stands for tetramethylsilane. B) all the hydrogens in TMS have the same chemical shift. C) TMS is relatively unreactive with most functional groups. D) TMS has a high boiling point, so it is not easily lost when	ng absorption at 1680 cm ⁻¹ in the infrared, what is its likely structure? not correct? handling the nmr sample.
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong characteristic characterist	ng absorption at 1680 cm ⁻¹ in the infrared, what is its likely structure? not correct? handling the nmr sample.
23 The ratio of the number of hydrogens generating doublet a to to A) x/y (distance in mm) B) 7.88/2.85 (chemical shifts in ppm) C) x/z (distance in mm) D) none of the above 24 If this spectrum is from a C ₁₀ H ₁₂ O ₂ compound, having a strong characteristic characterist	ng absorption at 1680 cm ⁻¹ in the infrared, what is its likely structure? not correct? handling the nmr sample.

27 The 1 Hnmr spectrum of diethyl ether shows?

46 Infrared spectroscopy examines energy excitations in which of the following ranges?

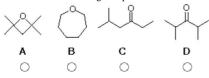
- O A) 0.01 to 0.1 kcal/mol
- OB) 1 to 10 kcal/mol
- O C) 10 to 50 kcal/mol
- O D) 50 to 100 kcal/mol

47 A $C_5H_{12}O_2$ compound has strong infrared absorption at 3300 to 3400 cm⁻¹.

The 1H NMR spectrum has three singlets at δ 0.9 , δ 3.45 and δ 3.2 ppm; relative areas 3:2:1. Addition of D_2O to the sample eliminates the lower field signal.

The 13 C NMR spectrum shows three signals all at higher field than $\delta 100$ ppm.

Which of the following compounds best fits this data?


- O A) 1,5-pentanediol
- O B) 1,3-dimethoxypropane
- O C) 2,2-dimethyl-1,3-propanediol
- O D) 2,4-pentanediol

48 A C₇H₁₄O compound has a strong infrared absorption at 1715 cm⁻¹.

The ¹H NMR spectrum consists of two signal groups: δ 1.10 ppm (d) and δ 2.77 (m), ratio 6:1.

The 13 C NMR spectrum shows three lines at $\delta 218$, 39 and 18 ppm.

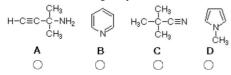
Which of the following compounds best fits this data?

 $\textbf{49} \ A \ C_9 H_{12} O_3 \ compound \ has \ two \ strong \ infrared \ absorptions \ between \ 1100 \ and \ 1250 \ cm^{-1} \ and \ at \ 1600 \ cm^{-1}.$

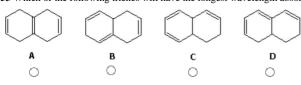
The 1H NMR spectrum has sharp singlet peaks at δ 3.6 and 6.6 ppm (intensity ratio 3:1).

The ^{13}C NMR spectrum shows three lines at δ 165, 115 and 55 ppm.

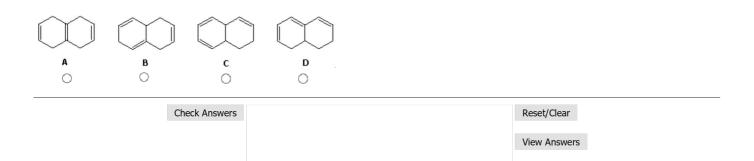
Which of the following compounds best fits this data?


- O A) 1,3,5-trimethoxybenzene
- O B) 1,2,3-trimethoxybenzene
- O C) 2,4,6-trimethyl-1,3,5-benzenetriol
- O D) 1-phenyl-1,2,3-propanetriol

50 An unknown compound displays a molecular ion at m/z = 83 amu


The 13 C NMR spectrum shows three lines at δ 126, 28.5 and 28.1 ppm.

The infrared spectrum shows a sharp strong absorption at 2235 cm⁻¹.


Which of the following compounds best fits this data?

- 51 An infrared spectrum has a strong absorption at 5.85 µ. Which of the following frequencies corresponds to this wavelength?
- O A) 3300 cm⁻¹
- O B) 1710 cm⁻¹
- O C) 1200 cm⁻¹
- O D) 890 cm⁻¹
- **52** Which of the following statements is **not correct**.?
- O A) frequencies in cm⁻¹ are much smaller numbers than frequencies in Hz
- \bigcirc B) wavelengths in μ are smaller numbers than wavelengths in Å
- O C) frequency varies inversely with wavelength
- O D) wavelengths given in nm are larger numbers than wavelengths in Å
- 53 Which of the following trienes will have the longest wavelength absorption in the ultraviolet?

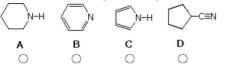
54 Which of the following trienes will have the simplest ¹Hnmr spectrum?

7 of 7

organic problems

Amines and Related Nitrogen Compounds

- 1. Which of the following is a 3°-amine?
- O A) 1-methylcyclohexylamine
- O B) triethylamine
- O C) tert-butylamine
- O D) N-methylaniline
- 2. Which of the following compounds is cyclopentyldiethylamine?


$$C_2H_5$$
 C_2H_5
 C_2H_5

- **3** Which of the following is a proper name for CH₂=CHCH₂NHCH₃?
- A) allylmethylamine
- O B) 4-amino-1-pentene
- O C) 2-amino-4-pentene
- O D) N-methyl-1-propenamine
- 4 Which of the following is tetrabutylammonium iodide?
- O A) C₄H₉NH₃⁺ I⁻
- O B) $C_4H_9N(CH_3)_3^+I^-$
- O C) (C₄H₉)₄N⁺ I⁻
- O D) (CH₃)₄N⁺ I⁻
- 5 Which of the following is N,N-dimethylaniline?

$$CH_3$$
 NH_2
 NH_2
 NH_2
 NH_3
 NH_2
 NH_2
 NH_3
 NH_4
 NH_5
 NH_5
 NH_5
 NH_5
 NH_5
 NH_6
 NH_6

- **6** Which of the following is a proper name for (CH₃)₂CHCH₂NHCH₂CH₂CH(CH₃)₂?
- O A) 2,7-dimethyl-4-azaoctane
- O B) butylpentylamine
- O C) 2,7-dimethylpropylbutylamine
- O D) 3-amino-2,7-dimethyloctane
- 7 Ethylmethylamine cannot be resolved under normal conditions. Why?
- \bigcirc A) the favored configuration is not chiral.
- O B) it isomerizes rapidly with the achiral isomer trimethylamine.
- O C) the nitrogen atom rapidly inverts its configuration leading to a racemic mixture.
- O D) the C-N bond is not stable under conditions used for resolution
- 8 Which of the following is pyridine?

- **9** Which of the following is the strongest base in aqueous solution?.
- A) (CH₃)₃N
- O B) (CH₃)₂N CH₂CH₂OH
- O C) CH₃CH₂CH₂NHOH
- O D) (CH₃)₄N OH
- 10 Which of the following is the strongest Brønsted base?

1 of 6

11 Dibutylamine,	(C ₄ H ₉) ₂ NH, and anisol	e, C ₆ H ₅ OCH ₃ , have sim	ilar boiling points, and a	re relatively insoluble in water

How might a mixture of these compounds be separated into the pure components?

- O A) i) dissolve mixture in ether; ii) extract the anisole into 10% aqueous NaOH
- O B) i) dissolve mixture in ether; ii) extract the amine into 10% aqueous HCl
- O C) i) dissolve mixture in ether; ii) extract the amine into 10% aqueous NaOH
- O D) i) dissolve mixture in ether; ii) extract the anisole into 10% aqueous HCl

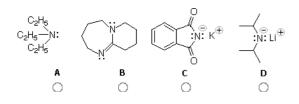
12 Which of the following is the strongest Brønsted acid?

13 Which of the following is the strongest Brønsted base?

14 Which of the following is the weakest Brønsted base?

15 Which of the following is the weakest Brønsted base?

16 Which of the following is the strongest Brønsted base?


17 Which compound is the likely product from reaction of pyrrolidine with excess methyl iodide (equation below)?

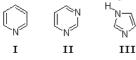
O C) III = strongest base, IV = strongest acid

O D) II = strongest base, III = strongest acid

III = strongest base, IV = strongest acid

19 Basic reagents are used in many organic reactions. Examples are: I triethylamine, II DBU, III potassium phthalimide & IV LDA. Which of these is the strongest base?

20 Benzylamine may be alkylated as shown in the following equation.


 $C_6H_5CH_2NH_2 + R-X ----> C_6H_5CH_2NHR$ (pyridine is used to scavange the HX produced here)

Which of the following alkyl halides is best suited for this reaction?

- O A) (CH₃)₃CCH₂Br
- \bigcirc B) C₆H₅Br
- O C) C₆H₅CH₂Br
- D) (CH₃)₃CCl

21 Three heterocyclic amines are shown below: I = pyridine, II = pyrimidine, III = imidazole.

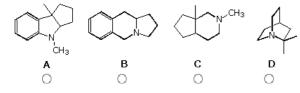
What is the order of increasing basicity? (weaker base < stronger base)

- A) II < I < III
- \bigcirc B) II < III< I
- O C) I < II < III
- O D) III < II < I
- 22 Which of the following reagents would not be a good choice for reducing an aryl nitro compound to an amine?
- O A) H₂ (excess) & Pt catalyst
- O B) LiAlH₄ in ether
- O C) Fe in 15% HCl
- O D) Zn in 10% HCl
- 23 What reagent is the source of nitrogen in the Gabriel synthesis of amines?
- O A) sodium azide, NaN₃
- O B) sodium nitrite, NaNO2
- O C) potassium cyanide, KCN
- O D) potassium phthalimide, C₆H₄(CO)₂NK
- 24 In order to prepare a 1°-amine incorporating an additional CH2 group from an alkyl halide, what reagent is often used as the nitrogen source?
- O A) sodium amide, NaNH₂
- O B) sodium azide, NaN₃
- O C) potassium cyanide, KCN
- O D) potassium phthalimide, C₆H₄(CO)₂NK
- 25 What set of conditions would be useful for preparing a 2°-amine?
- O A) 2°-RBr + NaNH₂
- O B) (i) 2°-RBr + NaN₃ (ii) H₂ & Pt
- \bigcirc C) (i) 1°-RNH₂ + 1°-RCHO (ii) H₂ & Pt
- O D) (i) 2 1°-RBr + potassium phthalimide (ii) H₃O⁺ & heat
- 26 What reagent is used in the Hinsberg test of amines?
- O A) (CH₃CO)₂O & pyridine
- O B) C₆H₅SO₂Cl in aq. NaOH
- O C) NaNO₂ in aq. H₂SO₄
- O D) CH₃I (excess) followed by AgOH
- 27 Which of the following will be the favored product from the reaction shown below?

28 Which of the following procedures would be best for preparing isobutylisopropylamine, (CH₃)₂CHNHCH₂CH(CH₃)₂?

○ A) (CH ₃) ₂ CHBr + (CH ₃) ₂ CHCH ₂ NH ₂	
○ B) (i) (CH ₃) ₂ CHBr + (CH ₃) ₂ CHCON	
O C) (i) (CH ₃) ₂ CHNH ₂ + (CH ₃) ₂ CHCH	
\bigcirc D) (CH ₃) ₂ CHCN + (CH ₃) ₂ CHNH ₂	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
What is the chief product from the HoftA) 4-methyl-1-pentene	mann elimination of 4-methyl-2-aminopentane?
B) 4-methyl-2-pentene	
C) 2-methyl-1-pentene	
O D) 2-methyl-2-pentene	
30 Which of the following procedures wo	ald be best for preparing dimethylcyclohexylamine, C ₆ H ₁₁ N(CH ₃) ₂ ?
A) (i) dimethylamine + cyclohexanone	
B) dimethylamine + cyclohexylbromic	
C) cyclohexylamine + 2 CH ₃ I in ether	
O D) (i) cyclohexylbromide + NaCN in 1	
24 XX	
31 What reagent would be best for convertA) excess H₂ & Pt.	ing the amide of (R)-2-phenylpropanoic acid, $C_6H_5CH(CH_3)CONH_2$, into (R)-1-amino-2-phenylpropane?
A) excess H₂ & Pt.B) NaOBr in aqueous base.	
O B) NaOBr in aqueous base. O C) NaBlH ₄ in methanol	
O D) LiAlH ₄ in ether.	
— D) En ma m cuici.	
	ing the amide of (R)-2-phenylpropanoic acid, C ₆ H ₅ CH(CH ₃)CONH ₂ , into (R)-1-phenylethylamine?
O A) excess H ₂ & Pt.	
O B) NaOBr in aqueous base.	
C) NaBlH ₄ in methanol	
O D) LiAlH ₄ in ether.	
Which of these would be classified as a to	
Which of these would be classified as a to	ertiary amine?
Which of these would be classified as a to H_3° CH_3 H_3° CH_3 H_3° CH_3 H_3° CH_3 C	ertiary amine?
Which of these would be classified as a to H_3° $C_{H_3}^{\circ}$ $C_{$	ertiary amine?
Which of these would be classified as a to H_3 C H_3 C H_3 C	ertiary amine?
Which of these would be classified as a to H_3° C_1° C	ertiary amine?
Which of these would be classified as a to the control of the choline benzedrine O A) choline O B) benzedrine O C) benadryl O D) coniine	benadryl H conline
Which of these would be classified as a to the control of the choline of the chol	ertiary amine? $N(CH_3)_2$ benadryl $N(CH_3)_2$ $N(C$
Which of these would be classified as a to the characteristic of t	ertiary amine? N(CH ₃) ₂ benadryl No, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. ecounts for their instability? to two more electronegative atoms such as O and N.
Which of these would be classified as a to HO CH3 H3C NH2 Choline benzedrine A) choline B) benzedrine C) benadryl D) coniine 34 Many kinds of amino alcohols are know Which of the following statements best as A) carbon does not like to form bonds B) the α-isomer rapidly rearranges to the statements of the control of the statements best as A and Carbon does not like to form bonds	ertiary amine? N(CH ₃) ₂ benadryl No, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. Executing for their instability? to two more electronegative atoms such as O and N. the more stable β amino alcohol.
Which of these would be classified as a to HO CH3 H3C OH CH3 H3C	wn, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. coounts for their instability? to two more electronegative atoms such as O and N. he more stable β amino alcohol. nolecule) leads to an imine product.
Which of these would be classified as a to HO CH3 H3C NH2 H3C	ertiary amine? N(CH ₃) ₂ benadryl No, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. Executing for their instability? to two more electronegative atoms such as O and N. the more stable β amino alcohol.
Which of these would be classified as a to HO CH3 H3C N H3C NH2 choline benzedrine A) choline B) benzedrine C) benadryl D) coniine 34 Many kinds of amino alcohols are know Which of the following statements best as A) carbon does not like to form bonds B) the α-isomer rapidly rearranges to to C) rapid loss of water (a stable small materials) D) rapid loss of amine leads to a stable 35 Which of the following amines reacts materials	ertiary amine? who, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. Executes for their instability? to two more electronegative atoms such as O and N. the more stable β amino alcohol. molecule) leads to an imine product. exarbonyl compound (aldehyde or ketone).
Which of these would be classified as a to HO CH3 H3C N + H3C NH2 Choline benzedrine A) choline B) benzedrine C) benadryl D) coniine 34 Many kinds of amino alcohols are know Which of the following statements best as A) carbon does not like to form bonds B) the α-isomer rapidly rearranges to to C) rapid loss of water (a stable small rapid loss of amine leads to a stab	ertiary amine? \[VN, but \$\alpha\$-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. executs for their instability? to two more electronegative atoms such as O and N. he more stable β amino alcohol. helecule) leads to an imine product. e carbonyl compound (aldehyde or ketone). enost rapidly with para-nitrophenylacetate, p-NO ₂ C ₆ H ₄ OCOCH ₃ ? 4NH ₂
Which of these would be classified as a to HO CH3 H3C N. H3C NH2 Choline benzedrine A) choline B) benzedrine C) benadryl D) coniine 34 Many kinds of amino alcohols are know Which of the following statements best as A) carbon does not like to form bonds B) the α-isomer rapidly rearranges to to C) rapid loss of water (a stable small n D) rapid loss of amine leads to a stable 35 Which of the following amines reacts n A) para-methoxyaniline, p-CH ₃ OC ₆ H ₄ ONH ₂ . B) para-nitroaniline, p-NO ₂ C ₆ H ₄ NH ₂ .	ertiary amine? \[VN, but \$\alpha\$-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. executs for their instability? to two more electronegative atoms such as O and N. he more stable β amino alcohol. helecule) leads to an imine product. e carbonyl compound (aldehyde or ketone). enost rapidly with para-nitrophenylacetate, p-NO ₂ C ₆ H ₄ OCOCH ₃ ? 4NH ₂
Which of these would be classified as a to HO CH3 H3C N+ OH DH DH2 Choline Denzedrine A) choline Denzedrine C) benadryl D) coniine 34 Many kinds of amino alcohols are know Which of the following statements best are A) carbon does not like to form bonds B) the α-isomer rapidly rearranges to to C) rapid loss of water (a stable small many D) rapid loss of amine leads to a stable of A) para-methoxyaniline, p-CH3OC6H4 B) para-nitroaniline, p-NO2C6H4NH2. C) aniline, C6H5NH2.	ertiary amine? \[\text{VN, but \$\alpha\$-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. executs for their instability? to two more electronegative atoms such as O and N. he more stable β amino alcohol. he more stable beads to an imine product. e carbonyl compound (aldehyde or ketone). The entiary amine? \[\text{N} \text{CH}_3\text{2} \] The conitine \[\text{N} \text{1.5} \text{COCH}_3\text{2.5} \] The conitine is table under most conditions. The conditions are not stable under most conditions. The country is the conditions are not stable under most conditions. The country is the conditions are not stable under most conditions. The country is the conditions are not stable under most conditions. The conditions are not stable under most conditions are not stable under most conditions. The conditions are not stable under most conditions are not stable under most conditions. The conditions are not stable under most condition
Which of these would be classified as a to HO CH3 H3C N. H3C NH2 Choline benzedrine A) choline B) benzedrine C) benadryl D) coniine 34 Many kinds of amino alcohols are know Which of the following statements best as A) carbon does not like to form bonds B) the α-isomer rapidly rearranges to to C) rapid loss of water (a stable small n D) rapid loss of amine leads to a stable 35 Which of the following amines reacts n A) para-methoxyaniline, p-CH ₃ OC ₆ H ₄ ONH ₂ . B) para-nitroaniline, p-NO ₂ C ₆ H ₄ NH ₂ .	ertiary amine? \[VN, but \$\alpha\$-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. executs for their instability? to two more electronegative atoms such as O and N. the more stable β amino alcohol. nolecule) leads to an imine product. e carbonyl compound (aldehyde or ketone). enost rapidly with para-nitrophenylacetate, p-NO ₂ C ₆ H ₄ OCOCH ₃ ? 4NH ₂
Which of these would be classified as a to HO CH3 H3C N. H3C N. H3C NH2 Choline benzedrine A) choline B) benzedrine C) benadryl D) coniine 34 Many kinds of amino alcohols are know Which of the following statements best as A) carbon does not like to form bonds B) the α-isomer rapidly rearranges to t C) rapid loss of water (a stable small rapid loss of amine leads to a stable 35 Which of the following amines reacts rapid loss of the following loss of	ertiary amine? \[VN, but \$\alpha\$-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. executs for their instability? to two more electronegative atoms such as O and N. the more stable β amino alcohol. nolecule) leads to an imine product. e carbonyl compound (aldehyde or ketone). enost rapidly with para-nitrophenylacetate, p-NO ₂ C ₆ H ₄ OCOCH ₃ ? 4NH ₂
Which of these would be classified as a to HO CH3 H3C N. H3C N. H3C NH2 Choline benzedrine A) choline B) benzedrine C) benadryl D) coniine 34 Many kinds of amino alcohols are know Which of the following statements best as A) carbon does not like to form bonds B) the α-isomer rapidly rearranges to to C) rapid loss of water (a stable small rapid loss of amine leads to a stable D) rapid loss of amine leads to a stable A) para-methoxyaniline, p-CH3OC6H B) para-nitroaniline, p-NO2C6H4NH2. C) aniline, C6H5NH2. D) cyclopentylamine, C5H9NH2.	ertiary amine? who, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. excounts for their instability? to two more electronegative atoms such as O and N. he more stable β amino alcohol. holecule) leads to an imine product. exarbonyl compound (aldehyde or ketone). anost rapidly with para-nitrophenylacetate, p-NO ₂ C ₆ H ₄ OCOCH ₃ ? ANH ₂
Which of these would be classified as a to HO CH3 H3C N. H3C N. H3C NH2 Choline benzedrine A) choline B) benzedrine C) benadryl D) coniine 34 Many kinds of amino alcohols are know Which of the following statements best as A) carbon does not like to form bonds B) the α-isomer rapidly rearranges to t C) rapid loss of water (a stable small rapid loss of amine leads to a stable D) rapid loss of amine leads to a stable A) para-methoxyaniline, p-CH3OC6H B) para-nitroaniline, p-NO2C6H4NH2. C) aniline, C6H5NH2. D) cyclopentylamine, C5H9NH2.	ertiary amine? who, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. ecounts for their instability? to two more electronegative atoms such as O and N. he more stable β amino alcohol. nolecule) leads to an imine product. e carbonyl compound (aldehyde or ketone). The entire instability? The entir
Which of these would be classified as a to HO CH3 H3C N. H3C N. H3C NH2 Choline benzedrine A) choline B) benzedrine C) benadryl D) coniine 34 Many kinds of amino alcohols are know Which of the following statements best as A) carbon does not like to form bonds B) the α-isomer rapidly rearranges to to C) rapid loss of water (a stable small rolling to C) rapid loss of amine leads to a stable D) rapid loss of amine leads to a stable O) rapid	ertiary amine? Who, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. Execution for their instability? to two more electronegative atoms such as O and N. he more stable β amino alcohol. Holecule) leads to an imine product. Execution of compound (aldehyde or ketone). Host rapidly with para-nitrophenylacetate, p-NO ₂ C ₆ H ₄ OCOCH ₃ ? ANH ₂ reaction of (S)-2-aminobutane with 2-butanone in the presence of NaBH ₃ CN?
Which of these would be classified as a to HO CH3 H3C N. H3C N. H3C NH2 Choline benzedrine A) choline B) benzedrine C) benadryl D) coniine 34 Many kinds of amino alcohols are know Which of the following statements best as A) carbon does not like to form bonds B) the α-isomer rapidly rearranges to to C) rapid loss of water (a stable small rapid loss of amine leads to a stable D) rapid loss of amine leads to a stable A) para-methoxyaniline, p-CH3OC6H B) para-nitroaniline, p-NO2C6H4NH2. C) aniline, C6H5NH2. D) cyclopentylamine, C5H9NH2.	ertiary amine? Who, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. Execution for their instability? to two more electronegative atoms such as O and N. he more stable β amino alcohol. Holecule) leads to an imine product. Execution of compound (aldehyde or ketone). Host rapidly with para-nitrophenylacetate, p-NO ₂ C ₆ H ₄ OCOCH ₃ ? ANH ₂ reaction of (S)-2-aminobutane with 2-butanone in the presence of NaBH ₃ CN?
Which of these would be classified as a to HO CH3 H3C N. H3C N. H3C NH2 H3C N	ertiary amine? who, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. Executs for their instability? to two more electronegative atoms such as O and N. he more stable β amino alcohol. He more stable β amino alcohol. He carbonyl compound (aldehyde or ketone). most rapidly with para-nitrophenylacetate, p-NO ₂ C ₆ H ₄ OCOCH ₃ ? NNH ₂ reaction of (S)-2-aminobutane with 2-butanone in the presence of NaBH ₃ CN? me chiral. (not enantiomers).
Which of these would be classified as a to HO CH3 H3C N. H3C N. H3C NH2 H3C N	ertiary amine? who, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. Executs for their instability? to two more electronegative atoms such as O and N. he more stable β amino alcohol. He more stable β amino alcohol. He carbonyl compound (aldehyde or ketone). most rapidly with para-nitrophenylacetate, p-NO ₂ C ₆ H ₄ OCOCH ₃ ? NNH ₂ reaction of (S)-2-aminobutane with 2-butanone in the presence of NaBH ₃ CN? me chiral. (not enantiomers).
Which of these would be classified as a to HO CH3 H3C NH2 H3C	ertiary amine? who, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. Executs for their instability? to two more electronegative atoms such as O and N. he more stable β amino alcohol. He more stable β amino alcohol. He carbonyl compound (aldehyde or ketone). most rapidly with para-nitrophenylacetate, p-NO ₂ C ₆ H ₄ OCOCH ₃ ? NNH ₂ reaction of (S)-2-aminobutane with 2-butanone in the presence of NaBH ₃ CN? me chiral. (not enantiomers).
Which of these would be classified as a to HO CH3 H3C N. H3C N. H3C NH2 H3C NH	ertiary amine? who, but α-amino alcohols such as 1-dimethylaminocyclopentanol are not stable under most conditions. Executs for their instability? to two more electronegative atoms such as O and N. he more stable β amino alcohol. He more stable β amino alcohol. He carbonyl compound (aldehyde or ketone). most rapidly with para-nitrophenylacetate, p-NO ₂ C ₆ H ₄ OCOCH ₃ ? NNH ₂ reaction of (S)-2-aminobutane with 2-butanone in the presence of NaBH ₃ CN? me chiral. (not enantiomers).

2/6/2016 6:49 PM 4 of 6


38 What is the chief product from the following reaction?

39 The nitrogen atom in each of the following tertiary amines may be removed as trimethyl amine by repeated Hofmann eliminations (exhaustive methylation followed by heating with AgOH).

Which of the amines requires the greater number of Hofmann sequences to accomplish this?

40 Only one of the following amines will lose its nitrogen atom as trimethyl amine by repeated Hofmann elimination reactions (exhaustive methylation followed by heating with AgOH).

Identify that amine.

41 A nitrogen containing compound dissolves in 10% aq. sulfuric acid..

The Hinsberg test (C₆H₅SO₂Cl in base) gives a solid product that is not soluble in 10% aq. NaOH...

Which of the following would best fit these facts?

- \bigcirc A) N,N-dimethylaniline, C₆H₅N(CH₃)₂.
- B) N-methylbenzamide, C₆H₅CONHCH₃.
- O C) N-methylaniline, C₆H₅NHCH₃.
- \bigcirc D) benzylamine, C₆H₅CH₂NH₂.
- 42 Which of the following reagents would be best for converting phenylacetamide (C₆H₅CH₂CONH₂) to benzylamine (C₆H₅CH₂NH₂)?
- O A) LiAlH₄ in ether.
- O B) i) P₂O₅ & heat; ii) LiAlH₄ in ether.
- O C) H₂ & Pt catalyst.
- O D) aqueous NaOBr.
- 43 The Hinsberg test of a C₅H₁₄N₂ compound produces a solid that is insoluble in 10% aq. NaOH.

This solid derivative dissolves in 10% aq. sufuric acid. Which of the following would best fit these facts?

- O A) NH₂CH₂CH₂CH₂N(CH₃)₂.
- O B) (CH₃)₂NCH₂CH₂NHCH₃.
- \bigcirc C) NH₂CH₂C(CH₃)₂CH₂NH₂.
- D) (CH₃)₂NCH₂N(CH₃)₂.
- 44 Which of the following reagents and conditions would be best for the preparation of cyclohexylamine?
- A) cyclohexanone + NH₃ + NaBH₃CN.
- O B) cyclohexylbromide + 2 NH₃.
- C) cyclohexylbromide + NaNH₂.
- O D) cyclohexene + NH₃.
- 45 Which of the following reagents would be best for converting phenylacetamide (C₆H₅CH₂CONH₂) to phenethylamine (C₆H₅CH₂CH₂NH₂)?
- O A) H₂ & Pt catalyst.
- O B) NaBH₃CN.
- O C) LiAlH₄ in ether.
- O D) aqueous NaOBr.
- 46 Repeated Hofmann elimination reactions (exhaustive methylation followed by heating with AgOH) will often remove a nitrogen atom from an amine molecule. Which of the following compounds is the likely product in this case?

5 of 6

organic	nroh	ame
organic	DIOU	cillo

0 (0 0	
47 What sequence of reactions would best accompli	sh the following reaction?	
 ○ A) i) LiAlH₄ in ether; ii) 3 CH₃I followed by he ○ B) i) LiAlH₄ in ether; ; ii) P₂O₅ & heat ○ C) i) 20% H₂SO₄ & heat; ii) P₂O₅ & heat ○ D) H₂ & Lindlar catalyst 	eating with AgOH	
48 What is the likely product from the following real N 1. H ₂ O ₂ 2. heat (>110 °C) A B O	or OH OF D	
 49 Which of the following statements concerning ar A) chiral amine oxides may be resolved. B) the nitrogen has a positive formal charge. C) the nitrogen hybridization is sp³. D) all types of amines can form amine oxide determined to the concerning are applied to the concerning are applied		
A) the nitrogen is sterically hindered by alkyl stB) nitrogen is more electronegative than carbon	pentene, preferentially react with electrophiles at a double bond of abstituents. 	-
51 A C ₅ H ₁₃ N compound gives a base soluble deriva The ¹³ Cnmr spectrum of this compound has four re Which of the following fits these facts best? ○ A) 1,1-dimethylpropylamine. ○ B) isopropyldimethylamine. ○ C) 2,2-dimethylpropylamine. ○ D) N-methyl-2-methylpropylamine.		
52 Reaction of <i>para</i> -chloroaniline with acetic anhyd Which of the following treatments would be best u A) react the unreacted amine with methyl iodide B) wash an ether solution of the crude product v C) wash an ether solution of the crude product v D) wash an ether solution of the crude product v	e. with concentrated brine (aq. NaCl). with 5% aqueous sulfuric acid.	e, contaminated with 6% unreacted amine.
Check Answers		Reset/Clear View Answers

Aldehydes and Ketones

- 1. Which of the following is a correct name for (CH₃)₂C=CHCOCH₃?
- O A) 2-methyl-2-penten-4-one
- O B) 4-methyl-3-penten-2-one
- O C) 1,3-dimethyl-2-pentenal
- O D) isopentenone
- **2.** Which of the following is 3,3-diphenylpropanal?
- \bigcirc A) C₆H₅CH₂CH(C₆H₅)CHO
- O B) C₆H₅CH₂CH₂COC₆H₅
- \bigcirc C) (C₆H₅)₂CHCH₂CHO
- \bigcirc D) (C₆H₅)₂CHCH₂COC₆H₅
- 3. Which of the following compounds is not named correctly?
- A) 2-methyl-3-heptanone (CH₃)₂CHCOCH₂CH₂CH₂CH₃
- **B**) phenylacetaldehyde C₆H₅CH₂CHO
- C) 4-hexyn-2-one CH₃COCH₂C≡CCH₃
- **D**) para-bromoacetophenone p-BrC₆H₄CH₂COCH₃
- **4.** Which of the following compounds is not named correctly?
- O A 3,3-dimethylcyclopentylcarbaldehyde
- O B H meta-chlorobenzaldehyde
- C 2-methyl-1-penten-4-one
- O D OHC CHO 3-formy/hexanedia
- **5.** Which of the following compounds is not named correctly?
- A 3-vinyl-2,4-heptanedione
- O B Cl 4,4-dichloro-2,5-cyclohexadien-1-one
- C 3,3-dimethyl-1-phenyl-1-butanone
- O D CHO 5-methylene-4-oxo-heptanal
- 6 Which of the following may be classified as an acetal?

- O A) I & II
- OB) III & IV
- O C) only IV
- O D) all but IV
- 7 Which of the following reactions is a good method for preparing an aldehyde?
- O A) Jones' reagent and a 1°-alcohol
- O B) Jones' reagent and a 2°-alcohol
- O C) PCC and a 1°-alcohol
- O D) H₂SO₄ a 1°-alcohol and heat
- 8 Which of the following are enol tautomers of 3-methylcyclohexanone?

1 of 8

	1 1	
rganic	prob	lems

TOH TOH TOH
I II IV O A) I & II O B) I & IV
C) II & III D) only I
9 Which of the following statements is not generally true? A) C=O is stronger than an equivalent C=C B) C=O has a larger bond dipole than C=C C) aldehydes and ketones have higher boiling points than similarly sized alkenes D) alkenes add nucleophiles more rapidly than aldehydes or ketones of similar structure
10 Which of the following compounds exchanges the largest number of hydrogens for deuterium when treated with KOD in D₂O? A) 3-methyl-1,2-cycloheptanedione B) 2-methyl-1,3-cycloheptanedione C) 5-methyl-1,3-cycloheptanedione D) 6-methyl-1,4-cycloheptanedione
11 Four C ₈ H ₁₄ O ketones are examined by ¹³ Cnmr spectroscopy. One of them has five distinct carbon signals. Which of the following fits this fact? A) 4,4-dimethylcyclohexanone B) 3,3-dimethylcyclohexanone C) 2,2-dimethylcyclohexanone D) 2,2,4,4-tetramethylcyclobutanone
12 Which of the following compounds could not be converted to pentanal in one or two steps? A) 1-pentyne B) trans-5-decene C) 2-pentanone D) 1-pentanol
13 Treatment of cyclohexanone with an excess of H ₂ ¹⁸ O produces ¹⁸ O labeled cyclohexanone. Which of the following is a likely intermediate in this isotope exchange? (the isotope is not named) A) 1-cyclohexen-1-ol B) 1,1-cyclohexanediol C) 2-cyclohexen-1-one D) 1,2-cyclohexanediol
14 Reaction of C ₆ H ₅ CHBr ₂ with NaOH in aqueous THF is likely to produce which product? ○ A) C ₆ H ₅ CHBrOH ○ B) C ₆ H ₅ CH(OH) ₂ ○ C) C ₆ H ₅ CHO ○ D) C ₆ H ₅ CO ₂ H
15 Which of the following carbonyl compounds reacts most rapidly with nucleophilic reagents? A) benzaldehyde B) 3,3-dimethylbutanal C) acetophenone D) 2,2-dimethylcyclohexanone
16 Which of the following amines would be best chosen for preparing an enamine derivative from cyclohexanone? A) dimethylamine B) ethylamine C) trimethylamine D) hydroxylamine
17 Which reaction or sequence of reactions would best accomplish the following synthesis? OH CH ₂ -NH ₂
 ○ A) CH₃NH₂, acid catalyst & heat ○ B) CH₂=NH, acid catalyst & heat ○ C) (i) NH₃ acid catalyst & heat; (ii) CH₂I₂ & Zn(Cu)
O D) (i) HCN & NaCN; (ii) LiAlH ₄ in ether

18 Heating cyclopentanone with either: I ethyl amine, or II diethylamine, together with an acid catalyst leads to different results. Which of the following best describes this difference? A) I gives an imine & II fails to react B) I gives an enamine & II fails to react C) I gives an imine & II gives an enamine D) I gives an enamine & II gives an imine
19 Which reaction or sequence of reactions would be best used to convert cyclohexanone to <i>cis</i> -1,2-cyclohexanediol? ○ A) PCC in CH ₂ Cl ₂ and base ○ B) (i) NaBH ₄ ; (ii) H ₃ PO ₄ & heat; (iii) OsO ₄ in pyridine ○ C) (i) NaBH ₄ ; (ii) H ₃ PO ₄ & heat; (iii) C ₆ H ₅ CO ₃ H ○ D) (i) NaBH ₄ ; (ii) OsO ₄ in pyridine
20 A C ₉ H ₁₀ O compound has a strong absorption at 1686 ⁻¹ cm in the infrared. Which of the following compounds would be expected to display such an absorption band? A B C D O O O
21 A C ₉ H ₁₀ O compound has a strong absorption at 1730 and two smaller but sharp absorption peaks at 2719 & 2818 ⁻¹ cm in the infrared. The ¹ Hnmr has a strong doublet at δ1.0 ppm. Which of the following compounds would be expected to display these features? A B C D O O
22 The Wittig reaction takes place between a carbonyl compound and a phosphorus ylid. Which of the following represents the dipolar contributor to such an ylide? (C ₆ H ₅) ₃ P-CHOCH ₃ (C ₆ H ₅) ₃ P-CH ₃ I (C ₆ H ₅) ₂ P-CH ₂ Li (C ₆ H ₅) ₃ P-CHCH ₃ I II III IV A) I & II B) II only C) III only D) I & IV
23 Which of the following reaction sequences would be best for converting cyclohexanol to methylenecyclohexane, (CH ₂) ₅ C=CH ₂ ? A) (i) H ₃ PO ₄ & heat; (ii) CH ₂ I ₂ + Zn(Cu) B) (i) PCC in CH ₂ Cl ₂ ; (ii) CH ₃ MgBr; (iii) H ₃ PO ₄ & heat C) PCC in CH ₂ Cl ₂ ; (ii) (C ₆ H ₅) ₃ P=CH ₂ D) CH ₂ N ₂ & heat
24 Which of the following Wittig reagents would be useful for converting R ₂ C=O into R ₂ CHCH=O? ○ A) (C ₆ H ₅) ₃ P=CH-OCH ₃ ○ B) (C ₆ H ₅) ₃ P=CH-CH ₃ ○ C) (C ₆ H ₅) ₃ P=Cl ₂ ○ D) (C ₆ H ₅) ₃ P=CH-CH=CH ₂
25 Two equivalents of the Wittig reagent (CH ₃) ₂ C=CH-CH=P(C ₆ H ₅) ₃ were allowed to react with a C ₄ H ₄ O ₂ compound. The chief product was 2,11-dimethyl-2,4,6,8,10-dodecapentaene, (CH ₃) ₂ C=CH(CH=CH) ₃ CH=C(CH ₃) ₂ . What was the C ₄ H ₄ O ₂ compound used in this reaction? A) 2-butyne-1,4-diol B) 1,2-cyclobutanedione C) 1,3-butadien-2,3-diol D) 2-butenedial
26 Which of the following reactions would not be a useful way of preparing 1-phenyl-2-butanol? A) phenylacetaldehyde + ethylmagnesium bromide B) butanal + phenylmagnesium bromine C) propanal + benzylmagnesium bromine D) 1-phenyl-2-butanone + NaBH ₄

organic	problems
---------	----------

27 Which of the following reactions would not be a useful way of preparing 2-phenyl-2-butanol? A) 2-butanone + phenylmagnesium bromine
O B) acetophenone + ethylmagnesium bromide
C) cis-2,3-dimethyloxirane + phenylmagnesium bromide
O D) ethylphenylketone + methylmagnesium iodide
28 In the reaction of (R)-3-phenyl-2-butanone with methylmagnesium iodide, what happens to the configuration of the stereogenic center?
A) nothing, it remains unchangedB) inversion takes place
O C) racemization occurs
O D) the product is achiral
29 Which of the following reactions would not be useful for converting 4,4-diethylcyclohexanone into 1,1-diethylcyclohexane?
O A) Wolff-Kishner reduction (N ₂ H ₄ , strong base & heat)
O B) Clemmensen reduction (Zn/Hg, acid & heat)
C) thioacetal reduction (i HSCH ₂ CH ₂ SH & BF ₃ ; ii H ₂ + Raney Ni)
O D) LiAlH ₄ in THF & heat
30 Which of the following is a semicarbazone derivative of an aldehyde (RCHO)?
O A) RCH=N-NHCONH ₂
O B) RCH=N-OH
O C) RCH=N-NH ₂
O D) RCH=N-C(CH ₃) ₃
31 Which of the following isomers is most acidic?
O A) 3,4-hexanedione
○ B) 2,5-hexanedione ○ C) 2,4-hexanedione
O D) hexanedial
32 You have two C ₆ H ₁₀ O ketones, I and II . Both are optically active, but I is racemized by treatment with base and II is not. Wolff-Kishner reduction of both ketones gives the same achiral hydrocarbon, formula C ₆ H ₁₂ . What reasonable structures may be assigned to I and II ? A) I is 3-methyl-4-penten-2-one; II is 4-methyl-1-penten-3-one B) I is 2-methylcyclopentanone; II is 3-methylcyclopentanone C) I is 3-methylcyclopentanone; II is 2-methylcyclopentanone
O D) I is 2-ethylcyclobutanone; II is 3-ethylcyclobutanone
33 Jones' reagent oxidizes aldehydes to carboxylic acids but normally does not oxidize ketones. What intermediate species is most likely responsible for the aldehyde oxidation?
A) a carbonyl hydrateB) an enol tautomer
O C) an oxonium conjugate acid of the aldehyde
O D) an acylium cation
34 The lithium enolate base from cyclohexanone reacts with alkyl halides, often in different ways. As shown here, methyl iodide and <i>tert</i> -butyl bromide react to give different organic products, I and II, together with lithium halides. What are the products from these reactions?
CH ₃
H ₃ C-C-Br O Li H ₃ C-I I
$II \xrightarrow{THF} \boxed{\qquad} \boxed{\qquad} \boxed{\qquad} \boxed{\qquad} \boxed{\qquad} H_3C^{-1} \\ THF \\ I$
○ A) I is 2-methylcyclohexanone; II is 2-t-butylcyclohexanone
O B) I is 1-methoxycyclohexene; II is 1-t-butoxycyclohexene
 C) I is 2-methylcyclohexanone; II is 1-t-butoxycyclohexene D) I is 2-methylcyclohexanone; II is a mixture of cyclohexanone and 2-methylpropene
C D, 1 is 2 meany eyelone various, 11 is a mixture of cyclone various and 2-meany iproperse
35 A $C_5H_{12}O$ compound is optically active, and is oxidized by PCC in CH_2Cl_2 to an optically active $C_5H_{10}O$ product, which is racemized in acid or base.
Which of the following best fits these facts? A) 2-pentanol
O B) 2-methoxybutane
O C) 2-methyl-1-butanol
O D) 3-methyl-1-butanol
36 Which of the following aldehydes, used alone, will undergo an aldol reaction? ○ A) formaldehyde, CH ₂ O

○ B) butanal, CH ₃ (CH ₂) ₂ CHO			
C) benzaldehyde, C ₆ H ₅ CHO			
O D) 2-propenal, CH ₂ =CHCHO			
27 Which of the following reaction accounts and	ould be best for more wine 2.2	dimethyl 2 havenone from	h.utom o19
37 Which of the following reaction sequences wo ○ A) (i) addition of <i>tert</i> -butylmagnesium brome			butanai?
O B) (i) NaBH ₄ ; (ii) PBr ₃ ; (iii) Mg in ether; (iv			
\bigcirc C) (i) Wittig reaction with $(C_6H_5)_3P=C(CH_3)$) ₂ ; (ii) BH ₃ in THF; (iii) H ₂ O	& base; (iv) PCC in CH ₂ C	cl_2
\bigcirc D) (i) Wittig reaction with $(C_6H_5)_3P$ =CHC(C	CH ₃) ₃ ; (ii) BH ₃ in THF; (iii) H	₂ O ₂ & base; (iv) PCC in Cl	H_2Cl_2
38 How can 1,1,1,2,2-pentadeutero-3,3-dimethyl	pentane, C ₂ H ₅ C(CH ₃) ₂ C ₂ D ₅ ,	be prepared from 3,3-dimet	hyl-2-pentanone?
O A) (i) NaOD in D ₂ O (excess); (ii) LiAlD ₄ in			
\bigcirc B) (i) Wolff-Kishner reduction with N_2D_4 in	ROD; (ii) NaOD in D ₂ O (exc	ess)	
\bigcirc C) (i) Zn & DCl in $CH_3CO_2D;$ (ii) $LiAlD_4$ ir	ı ether; (iii) D ₂ O workup		
O D) (i) NaOD in D ₂ O (excess); (ii) HSCH ₂ CH	$H_2SH + BF_3$; (iii) $D_2 + Raney$	Ni catalyst	
39 Acetaldehyde reacts with (R)-1,2-propanediol	(acid catalyst) to give two isc	meric acetals. What is their	isomeric relationship?
A) they are constitutional isomers			
O B) 2 they are diastereomers			
O C) 3 they are enantiomers			
O D) they are conformers			
40 What is the product of the following reaction?			
HO CHO CH ₃ OH H ³	→ ?		
	,		
HO CH(OCH ₃) ₂ CH(OCH ₃) ₂	CONOCH3		
A B	C D		
0 0	0 0		
41 What product or products are expected from a	cid-catalyzed hydrolysis of th	e following compound?	
Villa product or products are expected from a	era cataryzea nyaronysis or ar	y ronowing compound.	
O A) only the starting material itself (no reaction) n)		
B) benzaldehyde and 2,2-dimethyl-1,3-propa			
C) benzoic acid and 2,2-dimethyl-1,3-propan			
O D) 2-phenyl-1,3-propanediol and acetone			
42 Base induced elimination of 3-chlorocyclohex	canone I is much faster than el	imination of cyclohexyl chl	oride II .
What is the major factor accounting for this diff	erence?	, ,	
(A) the halogen in I is less hindered			
O B) the halogen in I is forced to be axial			
C) elimination of I produces a more stable coD) I rapidly forms an enolate anion, and this		le chloride ion	
42 Which of the fellowing and allowed and			
43 Which of the following optically active compo			
(R)-2,2,6-trimethylcyclohexanone (R)-2,2,5-tri			
I A) I and II	II	III	IV
5 4 G L L 400 L L			
,			
O B) I and III			
○ A) I and III ○ B) I and III ○ C) I and IV ○ D) all compounds will be racemized			
 ○ B) I and III ○ C) I and IV ○ D) all compounds will be racemized 	"HF followed by oxidation wi	h alkaline hydrogen perovi	de
 ○ B) I and III ○ C) I and IV ○ D) all compounds will be racemized 44 A C₅H₈ hydrocarbon is reacted with BH₃ in T 			de.
 ○ B) I and III ○ C) I and IV ○ D) all compounds will be racemized 44 A C₅H₈ hydrocarbon is reacted with BH₃ in T Treatment of the resulting product with PCC in What hydrocarbon best fits these facts? 			de.
 ○ B) I and III ○ C) I and IV ○ D) all compounds will be racemized 44 A C₅H₈ hydrocarbon is reacted with BH₃ in T Treatment of the resulting product with PCC in What hydrocarbon best fits these facts? ○ A) 1-methylcyclobutene 			de.
 □ B) I and III □ C) I and IV □ D) all compounds will be racemized 14 A C₅H₈ hydrocarbon is reacted with BH₃ in T Treatment of the resulting product with PCC in What hydrocarbon best fits these facts? □ A) 1-methylcyclobutene □ B) methylenecyclobutane 			de.
 □ B) I and III □ C) I and IV □ D) all compounds will be racemized 14 A C₅H₈ hydrocarbon is reacted with BH₃ in T Treatment of the resulting product with PCC in What hydrocarbon best fits these facts? □ A) 1-methylcyclobutene □ B) methylenecyclobutane □ C) vinylcyclopropane 			de.
 ○ B) I and III ○ C) I and IV ○ D) all compounds will be racemized 44 A C₅H₈ hydrocarbon is reacted with BH₃ in T Treatment of the resulting product with PCC in 			de.
 ○ B) I and III ○ C) I and IV ○ D) all compounds will be racemized 44 A C₅H₈ hydrocarbon is reacted with BH₃ in T Treatment of the resulting product with PCC in What hydrocarbon best fits these facts? ○ A) 1-methylcyclobutene ○ B) methylenecyclobutane ○ C) vinylcyclopropane 	CH ₂ Cl ₂ produces a chiral keto	one, formula $\mathrm{C}_5\mathrm{H}_8\mathrm{O}$.	

2/6/2016 6:49 PM 5 of 8

○ C) 3-ethyl-2-hydroxyhexanal○ D) 3-hydroxyhexanal
46 A C ₇ H ₁₂ O ₂ compound gives a positive Tollens' silver mirror test and a positive iodoform test. Which of the following would satisfy these facts? △ A) 2-hydroxy-3,3-dimethylcyclopentanone ○ B) 2,5-heptanedione ○ C) 2,2-dimethyl-3-oxopentanal ○ D) 2,2-dimethyl-4-oxopentanal
47 The iodoform test for methyl ketones is not widely used anymore. Which of the following spectroscopic tools is best for providing equivalent information? A) UV-Visible B) ¹ H nmr C) ¹³ C nmr D) infrared
48 An aldol condensation is used to prepare 1,3-diphenyl-2-propenone, C ₆ H ₅ CH=CHCOC ₆ H ₅ . Which combination of reactants will lead to this product? ○ A) enolate donor=acetaldehyde; carbonyl acceptor=benzaldehyde ○ B) enolate donor=phenylacetaldehyde; carbonyl acceptor=benzaldehyde ○ C) enolate donor=acetophenone; carbonyl acceptor=benzaldehyde ○ D) enolate donor=propiophenone; carbonyl acceptor=benzaldehyde
49 Which of the following compounds would be the major product from aldol condensation of 6-oxoheptanal? CH ₃ CH ₃ B C D C C C C C C C C C C C
50 Which of the following procedures would not be suitable for preparing 3-methyl-1-phenyl-1-butanone, C ₆ H ₅ COCH ₂ CH(CH ₃) ₂ ? ○ A) (i) C ₆ H ₅ COCH=CHCH ₃ + (CH ₃) ₂ CuLi in ether; (ii) H ₃ O ⁺ workup ○ B) (i) benzene + (CH ₃) ₂ CHCH ₂ COCl & AlCl ₃ (ii) H ₃ O ⁺ workup ○ C) (i) C ₆ H ₅ MgBr + (CH ₃) ₂ CHCH ₂ CHO in ether; (ii) H ₃ O ⁺ workup; (iii) PCC in CH ₂ Cl ₂ ○ D) (i) (CH ₃) ₂ CHMgBr + C ₆ H ₅ COCH ₃ in ether; (ii) H ₃ O ⁺ workup; (iii) PCC in CH ₂ Cl ₂
51 Formulas for four ethyl ethers are drawn below. Two are cleaved by aqueous acid much more easily than the other two. Which ethers are more easily hydrolyzed? I II III IV A) I and II B) II and III C) III and IV D) I and IV
52 The Wieland-Miescher ketone is an important synthetic intermediate. Its formula is shown below. What starting materials would be suitable for preparing this compound by a combination of Michael and aldol reactions? Wieland-Miescher ketone A) 4-methyl-2-cyclohexen-1-one and 3-butenal B) 2-methylcyclohexane-1,3-dione and 3-buten-2-one C) 2-methyl-2-vinyl-3-cyclohexen-1-one and acetaldehyde D) 2-methyl-2-cyclohexen-1-one and 1,4-dichlorobutan-2-one
 53 2,2-Dimethyl-1,3-propanediol is coveniently prepared by heating 2-methylpropanal with excess formaldehyde and Ca(OH)₂. What sequence of reactions takes place in this synthesis? A) dehydrogenation to 2-methyl-2-propenal followed by addition of formaldehyde B) dehydrogenation to dimethylketene followed by addition of formaldehyde C) a crossed aldol reaction followed by a crossed Cannizzaro reaction D) a crossed Cannizzaro reaction followed by a crossed aldol reaction

54 A bis-aldol dimerization of 1-phenyl-1,2-propanedione, C₆H₅COCOCH₃, gives which of the following?

55 What donor and acceptor reactants should be used to prepare the following compound by an aldol reaction?

- O A) acceptor = formaldehyde; donor = propanedial
- B) **acceptor** = 1,3-propanediol; **donor** = ethanal
- O C) acceptor = propanal; donor = formaldehyde
- O D) acceptor = formaldehyde; donor = propanal

56 What donor and acceptor reactants should be used to prepare the following compound by an aldol condensation (or Claisen-Schmidt reaction)?

- O A) acceptor = cyclopentanone; donor = benzaldehyde
- B) **acceptor** = benzaldehyde; **donor** = cyclopentanone
- O C) **acceptor** = phenylacetaldehyde; **donor** = cyclopentanone
- O D) acceptor = cyclopentanecarbaldehyde; donor = toluene

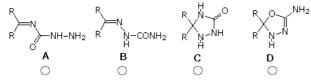
57 The formula of brevicomin, a pheremone of the western pine beetle, is shown below.

What open chain ketodiol would close to this bicyclic acetal? (ignore stereoisomer issues)

brevicomin

- O A) 7,8-dihydroxynonan-3-one
- O B) 6,7-dihydroxynonan-3-one
- O C) 7,8-dihydroxynonan-2-one
- O D) 6,7-dihydroxynonan-2-one
- 58 The formula of multistriatin, a pheremone of the elm bark beetle, is shown below.

What open chain ketodiol would close to this bicyclic acetal? (ignore stereoisomer issues)


multistriatin

- A) 3-ethyl-5-methyl-6,7-dihydroxyheptan-2-one
- O B) 4,6-dimethyl-7,8-dihydroxyoctan-3-one
- O C) 4-methyl-7,8-dihydroxynonan-3-one
- O D) 3-ethyl-6,7-dihydroxyoctan-2-one
- 59 A conversion of 2,5-dimethylfuran into 2,5-dimethylpyrrole (see equation) may be accomplished in two steps.
- $i) \ \text{hydrolysis of the furan in aqueous acid;} \quad ii) \ \text{heating the hydrolysis product with excess ammonium carbonate}$

What is the intermediate hydrolysis product used in the second step?

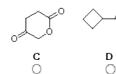
- O A) 2,5-hexanedione
- O B) 3,4-hexanedione
- O C) hexanedial
- O D) 2,5-dimethylcyclopentanone

60 The reagent semicarbazide, NH₂CONHNH₂, reacts with simple aldehydes and ketones (R₂C=O) forming crystalline derivatives called semicarbazones. Which of the following represents the structure of a semicarbazone?

61 Which of the following compounds (I through V) should not be classified as an acetal?

7 of 8

organic problems


Check Answers	Reset/Clear
	View Answers

Carboxylic Acids and Derivatives

- 1. Which of the following is a correct name for $(C_2H_5)_2C=C(CH_3)CH_2CO_2H$?
- O A) 4,4-diethyl-3-methyl-3-butenoic acid
- O B) 4-ethyl-3-methyl-3-hexenoic acid
- O C) 3-ethyl-4-methyl-3-hexenoic acid
- O D) 3-ethyl-4-methyl-3-hexen-6-oic acid
- 2. Which of the following is 2-ethyl-3-formyl-pentanoic acid?
- \bigcirc A) $C_2H_5CH(C_2H_5)CH(CO_2H)CHO$
- O B) (C₂H₅)₂CHCH(CHO)CO₂H
- O C) C₂H₅CH₂CH(CHO)CO₂C₂H₅
- \bigcirc D) C₂H₅CH(CHO)CH(C₂H₅)CO₂H
- 3 Which of the following compounds is not an anhydride?

- 4. Which of the following compounds is not named correctly?
- **A**) isopropyl propanoate (CH₃)₂CHCO₂C₂H₅
- **B**) *tert*-butyl acetate (CH₃)₃COCOCH₃
- \bigcirc C) methyl 2,2-dimethylpropanoate (CH₃)₃CCO₂CH₃
- $\bigcirc \ \textbf{D}) \ 2,2\text{-dimethylbutanedioic acid} \quad HO_2CC(CH_3)_2CH_2CO_2H$
- 5. Which of the following compounds is not named correctly?
- O A 3,3-dimethylcyclopentanecarboxylic acid
- O B Br O-C₂H₅ ethyl meta-bromobenzoate
- O C NH2 2-methyl-2-pentenamide
- O D HO₂C CO₂H 1,2,4-pentanetricarboxylic acid
- **6.** Which of the following compounds is not named correctly?
- O NH4⁺ ammonium cyclohexanecarboxylate
- isopropyl para-bromobenzoate
- C cyclopentanecarboxamide
- O D butanoylaniline

 ${\bf 7} \ Which \ of \ the \ following \ compounds \ is \ not \ named \ correctly?$

N hexanedinitrile
O B methane dimethyl carboxylate
C 4-methylpentanoyl chloride
O D acetic propionic anhydride
8 Which of the following common names does not represent a dicarboxylic acid? A) lactic acid B) succinic acid C) phthalic acid D) glutaric acid
 9 Which of the following statements is not generally true? A) the boiling point of a carboxylic acid is higher than that of its methyl ester. B) methyl esters are more reactive acylating agents than their amide counterparts. C) amide hydrolysis may be carried out with either strong acid or base catalysis. D) Fischer esterification of acids with alcohols requires a strong base catalyst.
10 What is the order of increasing acidity for the following compounds? (weaker < stronger) I 4-methylpentanoic acid II 3-chloropentanoic acid III 2-bromopentanoic acid IV 2,2-dichloropentanoic acid O A) I < II < III < IV O B) IV < III < II < I O C) I < III < II < IV O D) II < III < IV
 11 When comparing the acidity of propanoic acid and pyruvic acid, CH₃COCO₂H, which of the following statements is correct. A) propanoic acid has a lower pK_a and a smaller K_a than pyruvic acid B) propanoic acid has a lower pK_a and a larger K_a than pyruvic acid C) propanoic acid has a higher pK_a and a larger K_a than pyruvic acid D) propanoic acid has a higher pK_a and a smaller K_a than pyruvic acid
12 Consider the following dicarboxylic acids? I adipic acid II malonic acid III oxalic acid IV succinic acid
$HO_2C(CH_2)_4CO_2H \qquad CH_2(CO_2H)_2 \qquad (CO_2H)_2 \qquad HO_2C(CH_2)_2CO_2H$ What is the order of increasing acid strength ? (weaker < stronger) $ \bigcirc A) \ I < II < III < IV $ $ \bigcirc B) \ IV < III < III < II $ $ \bigcirc C) \ I < IV < II < III $ $ \bigcirc D) \ II < I < IV < III $
13 Dicarboxylic acids have two pK_a 's. For maleic acid (cis-2-butenedioic acid) these are $pK_a^{-1} = 2.0$, and $pK_a^{-2} = 6.3$ For fumaric acid (trans-2-butenedioic acid) these are $pK_a^{-1} = 3.0$, and $pK_a^{-2} = 4.5$ Which factor best explains why the cis-isomer has a smaller pK_a^{-1} and a larger pK_a^{-2} than the trans-isomer? A) intramolecular steric hindrance B) intramolecular dipole repulsion C) intramolecular hydrogen bonding D) selective solvation in water
14 An equimolar mixture of benzoic acid and benzyl alcohol is dissolved in equal volumes of ether and 5% aqueous NaOH. The resulting mixture separates into two immiscible liquid layers. Which of the following is approximately correct? A) both organic solutes are largely in the ether layer B) the benzyl alcohol is in the ether layer and the benzoic acid is in the water layer C) both organic solutes are largely in the water layer D) the benzyl alcohol is in the water layer and the benzoic acid is in the ether layer
15 Finahar actarification of phanylecatic said with 1 proposal cave a mixture of 02% of the actor propel phanylecatote contaminated with 70% proposaled said

15 Fischer esterification of phenylacetic acid with 1-propanol gave a mixture of 93% of the ester, propyl phenylacetate, contaminated with 7% unreacted acid. Which of the following treatments would be best used to purify the ester?

	https://www2.chemistry.msu.edu/faculty/reusch/virttx
A) reduce the unwanted acid with LiAlH	, in ether
B) wash an ether solution of the crude pr	
C) wash an ether solution of the crude pr	
O D) wash an ether solution of the crude pr	
<u> </u>	<u> </u>
	eful reaction for preparing isobutyric acid, (CH ₃) ₂ CHCO ₂ H?
O A) 2-methyl-1-propanol + Jones' reagent	
\bigcirc B) 2-bromopropane + CO ₂ ; followed by	
C) cis-2,5-dimethyl-3-hexene + O ₃ ; follo	
O D) 2-bromopropane + NaCN; followed b	y acid-catalyzed hydrolysis
17 Which of the following would not be a us	eful method for converting a carboxylic acid into an ester derivative?
\bigcirc A) RCO ₂ H + CH ₂ N ₂ in ether	
O B) RCO ₂ H + (CH ₃) ₂ C=CH ₂ & acid catal	yst
O C) RCO ₂ H + C ₂ H ₅ OH & acid catalyst +	heat (-H ₂ O)
O D) $RCO_2^{(-)} Na^{(+)} + (CH_3)_3 CBr$	
18 Which of the following is an intermediate	in the Fischer esterification of propanoic acid with ethanol?
A) 1-propoxy-1,1-dihydroxyethane	in the Fischer esternication of propulities acta with entailor:
B) 2-propoxy-1,1-dihydroxyethane	
C) 1-ethoxy-1,1-dihydroxypropane	
O D) 2-ethoxy-1,1-dihydroxypropane	
, y -,yy propune	
	react with benzoic acid, converting it into a different compound?
O A) NaI in acetone	
O B) SOCl ₂	
C) LiAlH ₄ in ether	
O =	
0 Which statement regarding isotope excharge occurs under any circumstar	
D) excess CH ₃ Li in pentane Which statement regarding isotope excharge occurs under any circumstary base-catalyzed exchange is more effectivy acid-catalyzed exchange is more effectivy acids and bases are equally effective in control of the con	e than acid-catalyzed exchange e than base-catalyzed exchange
20 Which statement regarding isotope exchar on exchange occurs under any circumstar base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in c 21 Which of the following compounds could A) 3,3-dimethyl-1-butene B) 2,3-dimethyl-2-butene	e than acid-catalyzed exchange e than base-catalyzed exchange
20 Which statement regarding isotope exchar on exchange occurs under any circumstar base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in c 21 Which of the following compounds could A) 3,3-dimethyl-1-butene B) 2,3-dimethyl-2-butene C) 2,2-dimethyl-1-propanol	e than acid-catalyzed exchange e than base-catalyzed exchange atalyzing an exchange
20 Which statement regarding isotope excharge occurs under any circumstare base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in cell. 21 Which of the following compounds could A) 3,3-dimethyl-1-butene	e than acid-catalyzed exchange e than base-catalyzed exchange atalyzing an exchange
20 Which statement regarding isotope exchar no exchange occurs under any circumstar base-catalyzed exchange is more effectiv acid-catalyzed exchange is more effectiv acids and bases are equally effective in c 21 Which of the following compounds could A) 3,3-dimethyl-1-butene B) 2,3-dimethyl-2-butene C) 2,2-dimethyl-1-propanol D) 2-bromo-2-methylpropane	e than acid-catalyzed exchange e than base-catalyzed exchange atalyzing an exchange
20 Which statement regarding isotope exchar on exchange occurs under any circumstar base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in c 21 Which of the following compounds could A) 3,3-dimethyl-1-butene B) 2,3-dimethyl-2-butene C) 2,2-dimethyl-1-propanol D) 2-bromo-2-methylpropane	not be converted into pivalic acid (2,2-dimethylpropanoic acid) in three or fewer steps? OH ₂ and a strong acid catalyst results in what change?
20 Which statement regarding isotope exchar on exchange occurs under any circumstar base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in c 21 Which of the following compounds could A) 3,3-dimethyl-1-butene B) 2,3-dimethyl-2-butene C) 2,2-dimethyl-1-propanol D) 2-bromo-2-methylpropane	not be converted into pivalic acid (2,2-dimethylpropanoic acid) in three or fewer steps? OH ₂ and a strong acid catalyst results in what change? Exchange with the 18O of the water
20 Which statement regarding isotope exchar on exchange occurs under any circumstar base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in c 21 Which of the following compounds could A) 3,3-dimethyl-1-butene B) 2,3-dimethyl-2-butene C) 2,2-dimethyl-1-propanol D) 2-bromo-2-methylpropane 22 Treatment of benzoic acid with excess 180 A) both oxygens of the carboxyl group exchange is more effective in c	not be converted into pivalic acid (2,2-dimethylpropanoic acid) in three or fewer steps? OH2 and a strong acid catalyst results in what change? Exchange with the 18O of the water with the 18O of the water
20 Which statement regarding isotope exchar on exchange occurs under any circumstar base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acids	not be converted into pivalic acid (2,2-dimethylpropanoic acid) in three or fewer steps? OH2 and a strong acid catalyst results in what change? Exchange with the 18O of the water with the 18O of the water
20 Which statement regarding isotope exchar on exchange occurs under any circumstar base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acids aci	not be converted into pivalic acid (2,2-dimethylpropanoic acid) in three or fewer steps? OH2 and a strong acid catalyst results in what change? Exchange with the 18O of the water with the 18O of the water
20 Which statement regarding isotope exchard no exchange occurs under any circumstate base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acids a	than acid-catalyzed exchange than base-catalyzed exchange than base-catalyzed exchange tralyzing an exchange tralyzing an exchange tralyzing an exchange tralyzing an exchange transport to the converted into pivalic acid (2,2-dimethylpropanoic acid) in three or fewer steps? OH ₂ and a strong acid catalyst results in what change? The transport to the water with the 18O of the water th
20 Which statement regarding isotope exchar no exchange occurs under any circumstar base-catalyzed exchange is more effectiv acid-catalyzed exchange is more effectiv acids and bases are equally effective in c 21 Which of the following compounds could A) 3,3-dimethyl-1-butene B) 2,3-dimethyl-2-butene C) 2,2-dimethyl-1-propanol D) 2-bromo-2-methylpropane 22 Treatment of benzoic acid with excess ¹⁸ C A) both oxygens of the carboxyl group exchanges with t D) no change takes place 23 Two C ₈ H ₉ Br isomers form Grignard reage Oxidation of each isomeric acid with hot KI	than acid-catalyzed exchange than base-catalyzed exchange than base-catalyzed exchange than base-catalyzed exchange that base converted into pivalic acid (2,2-dimethylpropanoic acid) in three or fewer steps? OH2 and a strong acid catalyst results in what change? The thange with the 18O of the water with the 18O of the water with the 18O of the water the 18O of the water than the
20 Which statement regarding isotope exchard no exchange occurs under any circumstate base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acids a	than acid-catalyzed exchange than base-catalyzed exchange than base-catalyzed exchange than base-catalyzed exchange that base converted into pivalic acid (2,2-dimethylpropanoic acid) in three or fewer steps? OH2 and a strong acid catalyst results in what change? The thange with the 18O of the water with the 18O of the water with the 18O of the water the 18O of the water than the
20 Which statement regarding isotope exchar no exchange occurs under any circumstar base-catalyzed exchange is more effectiv acid-catalyzed exchange is more effectiv acids and bases are equally effective in c 21 Which of the following compounds could A) 3,3-dimethyl-1-butene B) 2,3-dimethyl-2-butene C) 2,2-dimethyl-1-propanol D) 2-bromo-2-methylpropane 22 Treatment of benzoic acid with excess ¹⁸ C A) both oxygens of the carboxyl group exchanges with t D) no change takes place 23 Two C ₈ H ₉ Br isomers form Grignard reage Oxidation of each isomeric acid with hot KI	than acid-catalyzed exchange than base-catalyzed exchange than base-catalyzed exchange than base-catalyzed exchange that base converted into pivalic acid (2,2-dimethylpropanoic acid) in three or fewer steps? OH2 and a strong acid catalyst results in what change? The thange with the 18O of the water with the 18O of the water with the 18O of the water the 18O of the water than the
20 Which statement regarding isotope exchar on exchange occurs under any circumstar base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acids acids and bases are equally effective in compounds acids acids acids and bases are equally effective in compounds acids	than acid-catalyzed exchange ethan acid-catalyzed exchange atalyzing an exchange ethan base-catalyzed exchange atalyzing an exchange ethan base-catalyzed exchange ethan base converted into pivalic acid (2,2-dimethylpropanoic acid) in three or fewer steps? OH ₂ and a strong acid catalyst results in what change? Exchange with the 18O of the water ethange ethan base ethan ethan ethange ethan ethange ethange ethan ethan ethange ethan ethan ethange ethan ethan ethange ethan etha
20 Which statement regarding isotope exchar on exchange occurs under any circumstar base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acids acids and bases are equally effective in compounds acids acids acids and bases are equally effective in compounds acids	than acid-catalyzed exchange ethan acid-catalyzed exchange atalyzing an exchange ethan base-catalyzed exchange atalyzing an exchange ethan base-catalyzed exchange ethan base converted into pivalic acid (2,2-dimethylpropanoic acid) in three or fewer steps? OH ₂ and a strong acid catalyst results in what change? Exchange with the 18O of the water ethange ethan base ethan ethan ethange ethan ethange ethange ethan ethan ethange ethan ethan ethange ethan ethan ethange ethan etha
20 Which statement regarding isotope exchard no exchange occurs under any circumstate base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acids with excess acids. A) 3,3-dimethyl-1-butene B) 2,3-dimethyl-1-butene C) 2,2-dimethyl-1-propanol D) 2-bromo-2-methylpropane 22 Treatment of benzoic acid with excess acids with excess acids. B) only the carbonyl oxygen exchanges with the compounds acids with the compounds are the compounds are the compounds. B) no change takes place	ethan acid-catalyzed exchange ethan base-catalyzed exchange ethan
20 Which statement regarding isotope exchar on exchange occurs under any circumstar base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acids with excess acids with excess acids. A) 3,3-dimethyl-1-butene C) 2,2-dimethyl-1-butene C) 2,2-dimethyl-1-propanol D) 2-bromo-2-methylpropane 22 Treatment of benzoic acid with excess acids with excess acids with excess acids. C) only the carbonyl oxygen exchanges with the compounds acids with excess acids. C) only the OH oxygen exchanges with the compounds acids with hot KI which of the following compounds are the compounds are the compounds. C) acids acids with hot KI which of the following compounds are the compounds.	than acid-catalyzed exchange ethan acid-catalyzed exchange atalyzing an exchange ethan base-catalyzed exchange atalyzing an exchange ethan base-catalyzed exchange ethan base converted into pivalic acid (2,2-dimethylpropanoic acid) in three or fewer steps? OH ₂ and a strong acid catalyst results in what change? Exchange with the 18O of the water ethange ethan base ethan ethan ethange ethan ethange ethange ethan ethan ethange ethan ethan ethange ethan ethan ethange ethan etha
20 Which statement regarding isotope exchar on exchange occurs under any circumstar base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acids with excess acids. 21 Which of the following compounds are the original form of the following compounds are the original form of the following compounds are the original form acids with hot kills. A) I & II	ethan acid-catalyzed exchange ethan base-catalyzed exchange ethan
20 Which statement regarding isotope exchar no exchange occurs under any circumstar base-catalyzed exchange is more effectiv acid-catalyzed exchange is more effectiv acids and bases are equally effective in c 21 Which of the following compounds could A) 3,3-dimethyl-1-butene B) 2,3-dimethyl-2-butene C) 2,2-dimethyl-1-propanol D) 2-bromo-2-methylpropane 22 Treatment of benzoic acid with excess ¹⁸ C A) both oxygens of the carboxyl group exchanges with t D) no change takes place 23 Two C ₈ H ₉ Br isomers form Grignard reagon oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI Which of the following compounds are the oxidation of each isomeric acid with hot KI	ethan acid-catalyzed exchange ethan base-catalyzed exchange ethan
20 Which statement regarding isotope exchar on exchange occurs under any circumstar base-catalyzed exchange is more effective acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acid-catalyzed exchange is more effective acids and bases are equally effective in compounds acids with excess acids with excess acids. A) 3,3-dimethyl-1-butene C) 2,2-dimethyl-1-butene C) 2,2-dimethyl-1-propanol D) 2-bromo-2-methylpropane 22 Treatment of benzoic acid with excess acids with excess acids with excess acids. C) only the carbonyl oxygen exchanges with the compounds acids with excess acids. C) only the OH oxygen exchanges with the compounds acids with hot KI which of the following compounds are the compounds are the compounds. C) acids acids with hot KI which of the following compounds are the compounds.	ethan acid-catalyzed exchange ethan base-catalyzed exchange ethan

I BH₃ in ether II NaBH₄ in ethanol III H₂ & Pt catalyst IV LiAlH₄ in ether

○ A) I & IV○ B) II & III○ C) only III

2/6/2016 6:49 PM 3 of 8

O A) III & IV

O B) I & IV

O C) only I

O D) all are suitabl	0	D)	all	are	suitabl	l
----------------------	---	----	-----	-----	---------	---

34 Which of the following methods would not be useful for preparing ketones?

I Friedel-Crafts reaction of an acyl chloride with benzene (AlCl $_3$ catalysis)

II reaction of R₂CuLi with an acyl chloride in ether at low temperature.

III reaction of Grignard reagents with nitriles, followed by hydrolysis

IV reaction of methyllithium with the lithium salt of a carboxylic acid, followed by hydrolysis

- O A) II & IV
- O B) II & III
- O C) only III
- O D) none (all are useful)

35 What is the expected product from the double reaction drawn below?

36 Which of the following reactions is most likely to produce ethyl propanoate?

- A) sodium ethoxide + propanoic acid
- O B) propanol + acetyl chloride
- C) sodium propanoate + acetic anhydride
- O D) potassium propanoate + ethyl iodide

37 If diethyl amine is treated separately with the following derivatives of isobutyric acid, what order of reactivity is expected?

greater reactivity > lesser reactivity

I isobutyronitrile	II isobutyryl chloride	III ethyl isobutyrate	IV isobutyric anhydride
(2-methylpropanenitrile)	(2-methylpropanoly chloride)		(2-methylpropanoic anhydride)

- \bigcirc A) I > II > III > IV
- \bigcirc B) II > IV > III > I
- \bigcirc C) IV > II > III > I.
- \bigcirc D) IV > III > II > I
- 38 Methyl esters of carboxylic acids, RCO₂CH₃, have somewhat higher molecular masses than 1 °-amide, RCONH₂, derivatives of the same acid.

However, the amides have much higher boiling points. What is responsible for this difference?

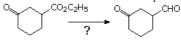
- A) hydrogen bonding molecular association.
- B) resonance conjugation of N with C=O
- C) the lower electronegativity of N versus O
- O D) rapid pyramidal inversion of the nitrogen

39 What is the expected product from the reaction sequence drawn below?

40 Ethyl acetate undergoes the following sequence of reactions:

- 1. treatment with excess phenylmagnesium bromide in ether
- 2. heating with conc. H₃PO₄
- 3. treatment B₂H₆ in ether, followed by alkaline H₂O₂
- 4. treatment with Jones' reagent (CrO3 in aqueous acid + acetone)

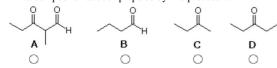
Which of the following is the expected product? note that C_6H_5 = phenyl


5 of 8

		0			
41 The C-NH2	bond in acetamide is	0.1 Å shorter	than the C-NH2	bond in ethylamine.	Why?

- O A) N:H repulsion in ethylamine
- O B) hyperconjugation in ethylamine
- O C) dipole interactions in acetamide
- \bigcirc D) p- π resonance in acetamide

42 Which of the following is not named correctly?


- 43 Methyl butyrate is reacted with excess ammonia, and the product is then treated with bromine in aqueous NaOH. What is the expected product?
- O A) butylamine
- O B) pentylamine
- O C) propylamine
- O D) N-bromobutyramide
- 44 Which reactions would best accomplish the following transformation?

- O A) 1. LiAlH₄; 2. Jones' reagent
- O B) 1. LiAlH₄; 2. PCC in CH₂Cl₂
- O C) 1. NaBH₄; 2. Jones' reagent
- O D) 1. NaBH₄; 2. PCC in CH₂Cl₂
- 45 Ethyl propanoate is added to an ethanol soution of sodium ethoxide and heated to reflux for several hours.

The product was then refluxed in 5% HCl for several more hours, and extracted with ether

What compound has been prepared by this procedure?

46 Adipic acid is converted to its diacid chloride by reaction with SOCl₂, and this then reacts with 2 equivalents of sodium azide in ether solution.

Addition of conc. HCl, followed by heating, results in considerable gas evolution and the formation of a crystalline water soluble solid.

What is this product? Hint: addition of aq. NaOH to the solid produces a foul smelling liquid.

- O A) 1,4-diaminobutane, dihydrochloride salt
- O B) 1,5-diaminopentane, dihydrochloride salt
- C) 1,6-diaminohexane, dihydrochloride salt
- O D) diammonium adipate
- 47 What donor and acceptor reactants should be used to prepare the following compound by a Claisen condensation?

- A) **acceptor** = ethyl benzoate; **donor** = ethyl phenylacetate
- O B) acceptor = ethyl phenylacetate; donor = ethyl benzoate
- O C) **acceptor** = ethyl benzoate; **donor** = ethyl benzoate
- \bigcirc D) **acceptor** = ethyl phenylacetate; **donor** = ethyl phenylacetate
- 48 What donor and acceptor reactants should be used to prepare the following compound by a Claisen condensation?

- A) **acceptor** = ethyl benzoate; **donor** = ethyl acetate
- O B) **acceptor** = ethyl acetate; **donor** = ethyl benzoate
- O C) **acceptor** = ethyl benzoate; **donor** = ethyl benzoate
- O D) acceptor = ethyl acetate; donor = ethyl acetate
- 49 What donor and acceptor reactants should be used to prepare the following compound by a Claisen condensation?

organic	problems
organic	problems

 ○ A) acceptor = ethyl propan ○ B) acceptor = diethyl oxyla ○ C) acceptor = diethyl carbo ○ D) acceptor = ethyl propan 	te; donor = ethyl propanoa nate; donor = ethyl propan	te oate			
What compound has been prep	ide was added, and the resu			Cl for several hours, and extracted with ether.	
	CO ₂ C ₆ H ₅	C ₆ H ₅			
А В	c ()	D			
51 2,2-Dimethyl-1,3-cyclohex: The resulting solution is adjust What compound has been prep A) 2-cyclohexenone B) 5-oxohexanoic acid C) 6-methylheptanoic acid D) 5-oxo-6-methylheptanoic	ed to pH=5 by addition of o ared by this procedure?			sodium hydroxide (10%).	
52 The malonic ester synthesis Which of the following would					
_		2,2-dimethylpropano	ic acid IV 4-per	ntenoic acid	
53 Which set of reaction condi ○ A) 1. NaCN in ethanol; 2. ○ B) 1. NaC≡CH in ether; 2. ○ C) 1. Mg in ether; 2. CO ₂ , ○ D) 1. Mg in ether; 2. CH ₃ C	$H_3O^{(+)}$ & heat aqueous KMnO ₄ & heat then $H_3O^{(+)}$	oreparation of 2,2-dime	ethylpropanoic acid	from 2-bromo-2-methylpropane?	
54 Which set of reaction condi ○ A) 1. NaCN in ethanol; 2. ○ B) 1. NaC≡CH in ether; 2. ○ C) 1. Mg in ether; 2. CO ₂ , ○ D) 1. NaOH in ethanol; 2.	$H_3O^{(+)}$ & heat aqueous KMnO ₄ & heat then $H_3O^{(+)}$	oreparation of 5-oxo-h	exanoic acid from 5	-bromo-2-pentanone?	
 Which of the following is n A) sodium 4-oxopentanoate B) succinic acid C) phthalic acid D) 4-methyl-3-pentenoic ac 		on heating?			
56 Which one of the following A) ethanal B) ethyl formate C) acetic acid D) acetone	compounds would react w	ith C ₂ H ₅ MgBr to mak	e 3-pentanol ?		
57 The acetoacetic ester synthe Which of the following would I acetylcyclopentane II ac A) I & II B) III & IV C) only I D) only II	not be easily prepared by t	his method?	-methyl-4-phenyl-2	?-butanone	
58 Devise a series of reactions Select reagents and conditions 1 sodium ethoxide 2 ethanol	from the following table, li				

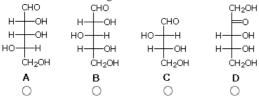
organic problems

in ethanol	acid catalyst & heat	heat	H ₃ O ⁽⁺⁾			
6 PBr ₃	7 NaBH ₄ in alcohol	8 CH ₂ I ₂ in ether Zn(Cu)	9 BrCH ₂ CO ₂ C ₂ H ₅	10 (CH ₃ CO) ₂ O + pyridine		
	en 5 then 10 then 2 en 6 then 5 then 10 then 2	2				
Heating this acid What is the C ₇ H ₉ A) benzylamin B) N-methylan	ne niline line (the toluidines are a	oduces a C ₈ H ₆ O ₄ J				ıd.
followed by neut Heating this com What is this prod A) 2-oxocycle B) 3-oxocycle C) 4-oxocycle	yl malonate with 2 equiva ralization of the base, pro pound in 10%H ₄ SO ₄ yiel luct? ohexane-1-carboxylic acid ohexane-1-carboxylic acid ohexane-1-carboxylic acid oclobutyl)propanoic acid	duces a $C_{15}H_{22}O_7$ dds a $C_7H_{10}O_3$ crys	compound.		ide,	
	ollowing acids does not do	C ₆ H ₅ CO ₂ H	ating? CO ₂ H D			

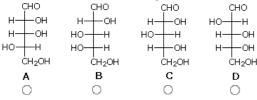
Check Answers

Reset/Clear

View Answers


Biologically Important Compounds

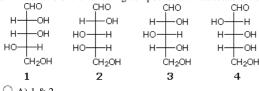
Carbohydrates


1 Which of the following is a D-aldopentose? ÇH₂OH CHO CHO -он -он ÇHO =0 -OH но--Н но-—н -OH HO-—н --ОН -OH -он Hсн₂он сн₂он ĊH2OH ĊH2OH В С Α D 0 0

2. Which of the following is an L-saccharide?

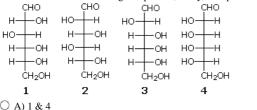
0

3 (+)-Arabinose is (2R, 3S, 4S)-aldopentose. Which of the following is (+)-arabinose?



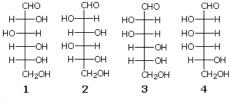
4 Which of the following gives an optically inactive aldaric acid on oxidation with dilute nitric acid?

 \circ


```
CHO
                        ÇHO
                                            CHO
                                                               CHO
        -он
                           -OH
                    H-
                                               -OH
                                                         HO
                                                                  -н
       -он
                  но-
                           -н
                                      но-
                                               -Н
                                                                  -OH
                                                           H-
но-
      <del>|</del> Н
                        ⊢н
Сн<sub>2</sub>Он
                                                                —он
                  H0-
                                       H-
                                              -он
                                                          H-
     ĊН2ОН
                                            ĊH<sub>2</sub>OH
                                                              ĊH<sub>2</sub>OH
                         В
                                             C
                                                               D
     Α
                         0
                                            0
                                                               \circ
```

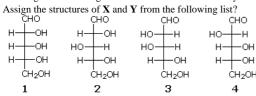
5 Which two of the following compounds are reduced to the same chiral alditol by sodium borohydride?

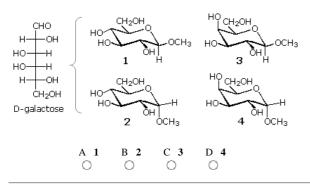
- O A) 1 & 2
- OB) 2 & 3
- OC) 3 & 4
- OD) 2 & 3
- 6 Which of the following statements is correct?
- O A) The Ruff procedure lengthens an aldose chain and gives a single product.
- O B) The Ruff procedure shortens an aldose chain and gives two epimers.
- O C) The Kiliani-Fischer procedure shortens an aldose chain and gives a single product.
- O D) The Kiliani-Fischer procedure lengthens an aldose chain and gives two epimers.


7 Which two of the following compounds, if any, are epimers?

- O A) 1 & 4
- OB) 1 & 3
- O C) 2 & 3

0	D)	3	&	4


- 8 Which of the following is not a disaccharide?
- O A) sucrose
- O B) mannose
- O C) lactose
- O D) maltose
- 9 Which of the following is not a reducing sugar?
- O A) sucrose
- O B) mannose
- O C) lactose
- O D) fructose
- 10 Which two of the following aldohexoses give the same osazone derivative?


- O A) 1 & 4
- OB) 1 & 3
- O C) 2 & 3
- OD) 3 & 4
- 11 Which statement about the pyranose form of mannose is not correct?
- A) it exists as two anomeric stereoisomers.
- \bigcirc B) it reacts with Tollens' reagent to give a silver mirror. (i.e. it is a reducing sugars)
- O C) reaction with excess CH₃I and AgOH gives a non-reducing penta-O-methyl derivative.
- O D) it resists reduction with aqueous sodium borohydride.
- 12 Two aldopentoses X and Y give the same osazone derivative.

 ${f X}$ is oxidized to an optically active aldaric acid by dilute nitric acid.

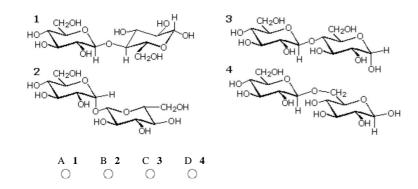
Ruff degradation of Y gave a tetrose which was similarly oxidized to an optically active aldaric acid

- O A) X=1 & Y=4
- O B) X=4 & Y=1
- O C) X=2 & Y=3
- O D) X=3 & Y=2
- 13 Which of the structures 1 through 4 is methyl α -D-galactopyranoside?

- 14 What is invert sugar, and why is it so named?
- A) the sugar mixture from hydrolysis of sucrose; fructose is isomerized to glucose.
- O B) the sugar mixture from hydrolysis of sucrose; the optical rotation changes from (+) to (-).
- \bigcirc C) the sugar mixture from hydrolysis of starch; α -glycosidic bonds are changed to β -glycosidic bonds.
- O D) the sugar mixture from hydrolysis of starch; glucose is isomerized to fructose.

15 Which of the following compounds is a β -aldopenta furanose?

16 Which of the following compounds is a β -ketohexafuranose?


17 Which of the following disaccharides is the α -anomer of 4-O-(β -D-glucopyranosyl)-D-glucopyranose?

18 Which of the following disaccharides is a nonreducing sugar (does not react with Tollens' reagent)?

19 Which of the following best describes the polysaccharide amylose?

- O A) a 1,4-O-α-linked poly-D-glucose
- O B) a 1,4-O-β-linked poly-D-glucose
- \bigcirc C) an alternating 1,4-O- α/β -linked poly-D-glucose
- O D) a 1,4-O-α-linked poly-D-mannose

 $\textbf{20} \ Which \ of the \ following \ disaccharides \ is \ the \ \beta-anomer \ of \ 4-O-(\beta-D-glucopyranosyl)-D-glucopyranose?$

- 21 Which of the following best describes the polysaccharide cellulose?
- O A) a 1,4-O-α-linked poly-D-galactose
- O B) a 1,4-O-β-linked poly-D-galactose
- O C) a 1,4-O-α-linked poly-D-glucose
- O D) a 1,4-O-β-linked poly-D-glucose
- 22 When octa-O-methyl D-cellobiose is hydrolyzed by aqueous acid, two O-methyated glucose derivatives are formed.

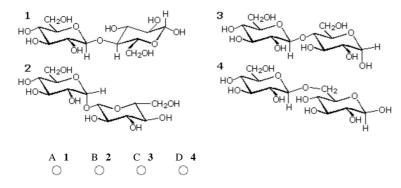
One is a tetramethyl derivative, and the other is a trimethyl derivative.

Why is a single methyl substituent lost in this process?

- \bigcirc A) one methoxy group is lost by β -elimination.
- O B) one methoxy group is an ester and the others are all ethers.
- O C) one methoxy group is part of an acetal, the others are all ethers.
- \bigcirc D) one glucose is an α -methyl glycoside; the other is a β -methyl glycoside.
- 23 Gentiobiose ($C_{12}H_{22}O_{11}$) is a reducing sugar. It forms an osazone derivative and mutarotates.

Hydrolysis of gentiobiose by the enzyme emulsin produces D-glucose as the only product.

An octamethyl derivative of gentiobiose is hydrolyzed to a mixture of 2,3,4,6-tetra-O-methylglucose and 2,3,4-tri-O-methylglucose.


What is the structure of gentiobiose (either anomer)?

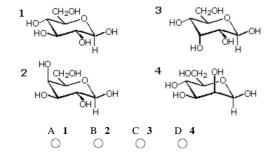
 $\textbf{24} \ \text{Trehalose} \ (C_{12}H_{22}O_{11}) \ \text{is a non-reducing sugar. Hydrolysis by the enzyme maltase produces D-glucose as the only product.}$

 $An \ octamethyl \ derivative \ of \ trehalose \ is \ hydrolyzed \ to \ 2,3,4,6-tetra-O-methyl glucose \ as \ the \ only \ product.$

What is the structure of trehalose?

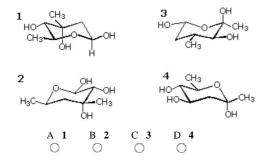
 ${\bf 25} \ {\bf Acid\text{-}catalyzed} \ {\bf reaction} \ {\bf of} \ {\bf D\text{-}glucose} \ {\bf with} \ {\bf benzaldehyde} \ {\bf produces} \ {\bf the} \ {\bf 4,6\text{-}O\text{-}benzylidene} \ {\bf derivative}.$

 $Reduction \ with \ NaBH_4, \ followed \ by \ excess \ HIO_4 \ cleavage \ and \ acid \ hydrolysis \ yields \ a \ C_4H_8O_4 \ tetrose \ and \ benzaldehyde.$


What is the configuration of this tetrose?

- O A) 2S, 3S
- O B) 2R, 3S
- O C) 2R, 3R
- O D) 2S, 3R

26 A D-aldohexose gives an optically inactive aldaric acid on oxidation with nitric acid.


Ruff degradation of this aldohexose produces an aldopentose that is reduced by NaBH4 to an optically active alditol.

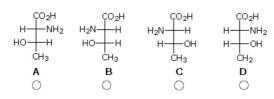
Which of the following is this hexose?

27 Mycarose is a rare C₇H₁₄O₄ sugar found in some antibiotic natural products.

 $My carose\ gives\ a\ positive\ Tollens'\ test,\ does\ not\ form\ an\ osazone\ derivative,\ and\ on\ exhaustive\ HIO_4\ oxidation\ gives\ HCO_2H,\ CH_3CHO\ and\ CH_3COCH_2CHO.$ Which of the following structures might be mycarose?

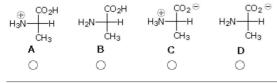
28 If two isomers have been classified correctly as anomers, they may also be called ...?

- O A) conformers
- O B) enantiomers
- O C) tautomers
- O D) diastereomers


Amino acids and Proteins

29 Both cysteine and methionine are chiral L-amino acids that incorporate a single sulfur. The C-2 configuration is S in methionine, but R in cysteine. Why?

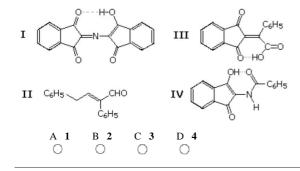
- O A) biosynthesis of cysteine proceeds by inversion at C-2.
- O B) the sulfur in cysteine prevents zwitterion formation.
- O C) the sulfur atom in methionine is remote from C-2 and does not influence the sequence rule.
- O D) the sulfur atom in cysteine is remote from C-2 and does not influence the sequence rule.


30 Threonine is (2S,3R)-2-amino-3-hydroxybutanoic acid.

Which of the following is threonine?

31 Which of the following is the major solute species in a solution of alanine at pH=2?

32 Which of the following is the major solute species in a solution of alanine at pH=6?



33 Which of the following is the major solute species in a solution of lysine at pH=10.8?

34 Which of the following is the major solute species in a solution of glutamic acid at pH=4.0?

35 Ninhydrin reagent reacts with α -amino acids to give a purple color.

In the the reaction of ninhydrin with phenylalanine, which of the following is responsible for this color?

- 36 Which of the following statements most correctly defines the isoelectric point?
- A) the pH at which all molecular species are ionized and that carry the same charge.
- O B) the pH at which all molecular species are neutral and uncharged.
- O C) the pH at which half the molecular species are ionized (charged) and the other half unionized.
- O D) the pH at which negatively and positively charged molecular species are present in equal concentration.
- 37 A tripeptide is composed equally of L-valine, L-tyrosine and L-alanine (one molecule of each).

How many isomeric tripeptides of this kind may exist?

- O A) three
- OB) four
- O C) six
- O D) eight
- 38 Peptides are composed of amino acids joined by amide bonds.

Which of the following statements is not correct?

- A) amide groups are more resistant to hydrolysis than are similar ester groups.
- \bigcirc B) p- π resonance stabilizes the amide bond.
- O C) stable conformations of peptides are restricted to those having planar amide groups.
- O D) amide groups do not participate in hydrogen bonding interactions.
- 39 The Strecker synthesis of α -amino acids begins with the reaction of an aldehyde with ammonium chloride and potassium cyanide.

This is followed by an acid-catalyzed hydrolysis, that gives the amino acid.

What functional group is hydrolyzed in the second step?

- O A) an ester
- O B) an nitrile
- O C) an amide
- O D) an imine derivative
- 40 The methyl and ethyl esters of many amino acids are sold commercially as their hydrochloride salts.

Why are these derivatives not sold in the form of the neutral amino esters?

- A) the salts are solids, whereas many amino esters are liquids and are difficult to package.
- O B) rearrangement to the N-alkylamino acid takes place.
- O C) polymerization takes place by acylation of amine groups by an ester.
- O D) an extra step in their preparation would be required.
- 41 You have a mixture of three amino acids: E (pI=3.2), Y (pI=5.7) & K (pI=9.7)

Under electrophoresis at pH=7.7, in which direction will each component of the mixture move?

O A) E to anode; Y & K to cathode

 ○ B) E to anode; Y stationary; K to cathode ○ C) E to cathode; Y stationary; K to anode ○ D) E & Y to anode; K to cathode
42 Sanger's reagent, 2,4-dinitrofluorobenzene, reacts with which functional groups in a peptide? A) free amino groups
O B) the phenolic hydroxyl group in tyrosine
O C) the aromatic heterocyclic rings of histidine and tryptophan
O D) the sulfide group of methionine
43 All the common amino acids, save one, react with cold nitrous acid (HNO ₂) and evolve nitrogen gas.
Which of the following amino acids is that compound? A) cysteine
O B) proline
O C) histidine
O D) arginine
44 The amino acid cysteine often forms a disulfide bond with another nearby cysteine.
How is this reaction best classified? A) an addition
O B) a substitution
O C) an oxidation
O D) a reduction
45 A hexapeptide has the composition Ala, Gly, Phe, Val ₃ . Both the N-terminal and C-terminal units are Val. Cleavage of the hexapeptide by chymotrypsin gives two different tripeptides, both having Val as the N-terminal group. Among the products of random hydrolysis is a Ala-Val dipeptide fragment. What is the primary structure of the hexapeptide?
○ A) Val-Gly-Phe-Val-Ala-Val ○ B) Val-Ala-Phe-Val-Gly-Val
O C) Val-Gly-Ala-Val-Phe-Val
O D) Val-Phe-Val-Ala-Gly-Val
46 An octapeptide has the composition Ala ₂ ,Gly ₂ ,Phe ₂ ,Ser ₂ . The N-terminal unit is Ala. Cleavage of the octapeptide by chymotrypsin gives a single tetrapeptide, having Ala as its N-terminal group. Among the products of random hydrolysis is a Phe-Ala-Gly tripeptide fragment. What is the primary structure of the octapeptide? A) Ala-Gly-Ser-Phe-Phe-Ser-Gly-Ala B) Ala-Ser-Gly-Phe-Ala-Gly-Ser-Phe C) Ala-Ser-Gly-Phe-Ala-Ser-Gly-Phe D) Ala-Gly-Ser-Phe-Ala-Gly-Ser-Phe
47 Peptide bond formation from protected amino acid reactants is often carried out with which reagent? A) p-toluenesulfonyl chloride
O B) di-t-butyl dicarbonate
O C) dicyclohexylcarbodiimide
O) benzyl chloroformate
48 What reagent is used in the Edman degradation for N-terminal group analysis of peptides?
A) phenyl isothiocyanateB) di-t-butyl dicarbonate
O C) dicyclohexylcarbodiimide
O D) benzyl chloroformate
49 Which of the following methods selectively cleaves a peptide at methionine residues?
○ A) trypsin digestion.○ B) cyanogen bromide.
C) chymotrypsin digestion.
O D) Edman degradation.
50 Which of the following is not an important secondary structural feature in large peptides and proteins?
\bigcirc A) the α -helix.
O B) the β-turn. O C) chair conformations.
O D) the β-pleated sheet.
51 Which of the following statements is true for phenylalanine in an aqueous solution at pH = pI?
 ○ A) the nonpolar, neutral species C₆H₅CH₂CH(NH₂)CO₂H is the most abundant solute. ○ B) the concentrations of [+] and [-] charged molecular ions are equal.

	1.1
organic	problems
9184111	procreti

\circ	C)	race	mization	is	rapid.	
\cap	-		44.4			

O D) this condition is impossible, since pH can never equal pI.

52 Which of the following factors has the least influence on the secondary and tertiary structures of proteins?

A) the achiral nature of glycine units.

- O B) steric hindrance of bulky side-chains on the peptide backbone.
- C) hydrogen bonding of C=O to N-H groups located near each other in space.
- O D) conformational restriction imposed by proline units.

53 From the reagents in the following table, select the one best used to cleave peptide chains at Arg and Lys residues.

1	2	3	4	5
ninhydrin	cyanogen bromide	trypsin	chymotrypsin	phenyl isothiocyanate

A 5 B 4 C 3 D 2

54 From the reagents in the following table, select the one used in a color test for amino acids.

1	2	3	4	5
ninhydrin	cyanogen bromide	trypsin	chymotrypsin	phenyl isothiocyanate

A 1 B 2 C 3 D 4

Lipids

55 Fatty acids are important components of many lipids. For which of the following lipid classes or lipid derivatives are fatty acids not a significant component?

- A) phospholipids
- O B) triglycerides
- O C) waxes
- O D) steroids

56 Which of the following is a general characteristic of those natural products classified as lipids?

- O A) they are generally insoluble in water and soluble in organic solvents.
- O B) they are generally soluble in water and insoluble in organic solvents.
- C) they have the common structural feature of two or more fused carbon rings.
- O D) they generally have a high weight proportion of oxygen (>40%).

57 Which of the following would be classified as a sesquiterpene?

58 Which if any of the following is a triglyceride?

59 Which of the following statements about glyceryl tripalmitate, 1,2,3-propanetriol tris(hexadecanoate), is not true?

- O A) it is reduced to 1-hexadecanol by lithium aluminum hydride
- O B) it is achiral
- O C) it has a higher melting point than glyceryl trioleate
- O D) it adds bromine

60 Counting both constitutional and stereoisomers, how many isomeric triglycerides incorporating one oleic acid and two stearic acid groups exist?

- O A) one (there are no isomers)
- OB) two
- O C) three
- O D) four

- 61 Which statement comparing the soap. sodium stearate, and the detergent sodium lauryl sulfate is not true?
- O A) both form micelles in water dispersion.
- O B) at pH below 6.5 the soap precipitates, the detergent does not.
- O C) the soap is less alkaline (basic) than the detergent.
- O D) calcium salts of the soap are relatively insoluble.
- 62 Which of the following would be classified as a prostaglandin?

HO..., O
$$\bigcirc$$
 O \bigcirc CH2 \oplus CgH17 \bigcirc CH2 \oplus O \bigcirc CD2H \bigcirc CD2H \bigcirc CD2H \bigcirc CD2H \bigcirc CD3H \bigcirc C

63 Which of the following is vitamin A?

HO,,,, O
$$\bigcirc$$
 O \bigcirc CH₂ \oplus CeH₁₇

$$\bigcirc$$
 CH₂ \oplus CeH₂N(CH₃)₃

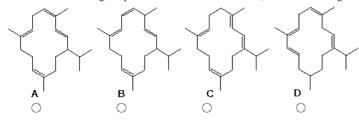
$$\bigcirc$$
 CH₂

$$\bigcirc$$
 CH

 $\textbf{64} \quad \text{Spermaceti, } C_{32}H_{64}O_2 \text{, is a substance found in the head of the sperm whale. It displays a strong infrared absorption at 1735 cm$^{-1}$}$

 $LiAlH_4$ reduction of spermaceti gives a single $C_{16}H_{34}O$ alcohol

What class of lipids does spermaceti belong?


- A) triglycerides
- O B) waxes
- O C) terpenes
- O D) trans-fatty acids
- 65 Cembrene, a $C_{20}H_{32}$ hydrocarbon, has a UV λ_{max} =240 nm.

 $Exhaustive\ addition\ of\ hydrogen\ (Pd\ catalyst)\ gives\ 4-is opropyl-1,7,11-trimethyl cyclotetra decane.$

Ozonolysis of cembrene with a Zn dust workup yields eqimolar amounts of CH₃COCH₂CH₂CHO, CH₃COCHO,

CH3COCH2CH2CH[CH(CH3)3]CHO & CH2(CHO)2

Which of the following is a plausible structure for cembrene (double bond configurations are not specified)?

Nucleic Acids

- 66 Which of the following is not a common component of both DNA and RNA?
- O A) ribose
- O B) phosphate
- O C) cytosine
- O D) adenine
- 67 Which of the following is not a component of RNA?
- O A) adenine
- O B) phosphate
- O C) cytosine
- O D) thymine
- **68** Which of the following is purine base?
- O A) guanine
- O B) indole

organic	1- '	1
nroanic	nron	iems

○ C) cytosine○ D) thymine					
 69 Which of the following is a pyrimidine base? A) imidazole B) guanine C) cytosine D) adenine 					
70 The H-bonded base pair shown on the right represents which of the following? (A) adenine-thymine (B) guanine-cytosine (C) adenine-cytosine (D) adenine-guanine					
71 Which of the following is a nucleoside?					
NH ₂					
72 In DNA replication the complementary nucleotide sequence for 5'-ACGT-3' is which of the following? One is a complementary nucleotide sequence for 5'-ACGT-3' is which of the following? Don't GACGT-5' One is a complementary nucleotide sequence for 5'-ACGT-3' is which of the following? One is a complementary nucleotide sequence for 5'-ACGT-3' is which of the following? One is a complementary nucleotide sequence for 5'-ACGT-3' is which of the following? One is a complementary nucleotide sequence for 5'-ACGT-3' is which of the following? One is a complementary nucleotide sequence for 5'-ACGT-3' is which of the following?					
73 What is the complementary RNA sequence for the DNA segment AATCAGTT? A) AAUCAGUU B) CCAUCGAA C) AACUGAUU D) UUAGUCAA					
74 How many nucleotides are needed to code for a specific amino acid? A) one B) two C) three D) four					
Check Answers	Reset/Clear View Answers				