
Programming Project Submission Guidelines

CS 273 R. Brown March 11, 2018

Programming project submissions consist of the following parts, all submitted via stogit:
(1) a cover page COVER.md as described below; for multi-stage projects, each stage submission

should update the cover page;
(2) your source code, including Makefile if available;
(3) a file README.md containing any external documentation, including information on any

extra features.

(1) Cover Page

Include a cover page file COVER.md at the top level of your project directory (e.g.,
∼/OS/pp-shell/COVER.md).

• Your cover page should include the following form of the pledge.

I pledge my honor that I have neither given nor received assistance on this programming
project, except as explicitly stated on this page, and that I have seen no dishonest work.

Signed
I have intentionally not signed the pledge (check only if appropriate)

◦ To indicate signing the pledge, type your name and enter either [] or a box near the last
line of the pledge statement. (stogit authentication confirms your signature.)

◦ To indicate not signing the pledge, do not type your name, and enter either X or a
checkmark near the last line of the pledge statement.

• After the pledge enter a statement of help received (on that stage, for a multi-stage project),
for example,

== Help received ==

I talked with Jane Doe about how to use execve()
or

== Help received ==

I received no help on this phase of this assignment

You are not expected to do it all alone, but you are expected to cite your sources
honestly. Joint projects are not permitted without special approval in advance.

(3) README file

Submit a file README.md in the top level of your project directory.
• Include any external documentation for your program, including instructions for building the

code and running the program. Use the following line as a header for your external documen-
tation:

== External Documentation ==

• List any extra features beyond a basic assignment in order to demonstrate your insight beyond
the basic material and improve your grade. Some significant extra features are suggested in
each programming-project assignment sheet; you may also think of some ideas of your own.
Use the following line as a header for your extra feature list:

== Extra Features ==

Note: Plan to complete the basic assignment before tackling any extra features. This is a
matter of self-protection: it is better to submit a well-done basic assignment on time than a
late assignment with extras. Extra features will be judged on the basis of appropriateness,
difficulty, creativity and originality, use of the programming language, programming style and
documentation. Point out your extra features clearly in README.md, or they will probably
go unnoticed.

1

Late Submissions

Penalties for late projects will take into account any extenuating circumstances and the number
of days late. Please let me know as soon as you know you will realize your project will be late.

Extra features on late submissions will ordinarily be disregarded—it is better to hand in the
basic assignment on time then to turn in a late assignment with extras.

Documentation Standard

Projects should include documentation as follows.

• Include a comment block at the beginning of each file briefly stating (1) the purpose of the
code (2) identifying information such as author and date.

• Include a comment block near the heading of the most important functions that includes a
specification. Specifications provide concise and unambiguous descriptions of any arguments,
return value and “out” parameters, and describe the logical effects of the function, e.g., via
preconditions and postconditions. Use a consistent and easily digested format for specifications.

Less important functions, such as routine auxiliary functions, may be described in a summary
line or two.

• Give concise data invariants for all important global and local variables and data structures.
A data invariant states the logical properties of a variable or data structure that remain true
whenever that variable or structure is used.

• Include invariant assertions and loop invariants (iteration invariants) to outline the logical pro-
gression of computations. An invariant assertion describes the logical state of the computation
at a given point. An iteration invariant for a tail-recursive function is an invariant assertion
that is true at the beginning and ending of every call of that function. Likewise, a loop invari-
ant is an invariant assertion that is true at the beginning and end of every iteration of a loop
(for imperative languages).

2

