
Lab 2: More on C programming 1

Lab 2: More on C programming
CS 273 Monday, 8-31-20 Revision 1.2

Preliminary material

• malloc(), free(); sizeof

• enum types.

• Arrays of pointers to characters/arrays of strings.

• struct (see below)

• Interface/implementation modules in C (see below)

• extern variable declarations.

Lab 2: More on C programming 2

• File structeg.c . See ~cs273/egs for this and other examples of C programming.

/* example of struct in C. RAB 1/2001 */

#include <stdio.h>

struct date {
int month;
int day;
int year;

};

/* array of month names */

char *month_name[12] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };

/* get_date
1 arg: dp, address of an (allocated) date structure
state change: values are obtained interactively for the fields of *dp
return: integer 1 on success, 0 on failure */

int get_date(struct date *dp)
{
printf("Enter day of the month (1-31): ");
if (scanf("%d", &dp->day) != 1)
return 0;

printf("Enter month of the year (1-12): ");
if (scanf("%d", &dp->month) != 1)
return 0;

printf("Enter year (e.g., 2001): ");
if (scanf("%d", &dp->year) != 1)
return 0;

/* successful initialization of *dp */
return 1;

}

/* main program */

int main()
{
struct date d;

if (!get_date(&d))
printf("Unable to read date successfully\n");

else
printf("The date you entered was %s %d, %d.\n",

month_name[d.month-1], d.day, d.year);

return 0; /* normal exit status */
}

Lab 2: More on C programming 3

Notes:

– A struct definition is something like a class definition, except that there are no methods,
constructors, public/private access specifiers, etc. day, month and year are the fields
of the struct. The access to fields is always “public.” As in C++, if D is a variable of
the type struct date, then D.day refers to the day field for that variable D, etc.

The struct name date identifies that struct, but that name must be preceded by the
word struct in order to be used syntactically as a type (see, e.g., the argument for
get date()), unless you use typedef.

– month name is an array of twelve strings. The subsequent curly bracket syntax provides
initial values for those strings.

– When passing a data structures such as a date struct variable as an argument (or return
value), you should normally pass the address of that data structure, for efficiency. If you
want to be sure your function doesn’t modify such a data structure, use const.

– The syntax &dp->day is equivalent to &((*dp).day); its value is the address of the day

field of the date pointed to by dp.

– See the man page for information about return value from scanf.

– returning from main() is equivalent to making an exit system call with that return
value as the argument.

• Here is a rewrite of structeg.c as a modular program in C.

1. File date.h

/* interface module for date data structure
RAB 2/2018 */

#ifndef _DATE_H_
#define _DATE_H_

struct date {
int month;
int day;
int year;

};

int get_date(struct date *dp);

extern char *month_name[];

#endif

Lab 2: More on C programming 4

2. File date.c

/* implementation module for date data structure
RAB 1/2001 */

#include <stdio.h>
#include "date.h"

/* array of month names */

char *month_name[12] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };

/* get_date
1 arg: dp, address of an (allocated) date structure
state change: values are obtained interactively for the fields of *dp
return: integer 1 on success, 0 on failure */

int get_date(struct date *dp)
{
printf("Enter day of the month (1-31): ");
if (scanf("%d", &dp->day) != 1)

return 0;
printf("Enter month of the year (1-12): ");
if (scanf("%d", &dp->month) != 1)

return 0;
printf("Enter year (e.g., 2001): ");
if (scanf("%d", &dp->year) != 1)

return 0;

/* successful initialization of *dp */
return 1;

}

Lab 2: More on C programming 5

3. Main program file structeg2.c

/* example of interface/implementation modules in C. RAB 1/2001 */

#include <stdio.h>
#include "date.h"

/* main program */

int main()
{
struct date d;

if (!get_date(&d))
printf("Unable to read date successfully\n");

else
printf("The date you entered was %s %d, %d.\n",

month_name[d.month-1], d.day, d.year);

return 0; /* normal exit status */
}

Comments:

– In the interface module date.h we give struct definitions, typedefs, function head-
ers and variable declarations. Without the extern, we would be defining the variable
month-name instead of declaring it, which would lead to errors at link time (assuming
that date.h is #included in more than one file).

– Always #include system header files (e.g., <stdio.h>) before other header files (e.g.,
"date.h").

– We define and initialize the (global) variable month name in date.c, which was merely
declared in date.h.

Laboratory exercises

Our goal is to get familiar with getline, structs and parsing of input lines.

1. Create a lab2 directory for work on this lab, and change to that directory.

2. (Introduction to getline().) Write a brief program echoline.c that uses getline to read
a line of standard input then prints that input line. (Be sure to allocate your buffer, etc.)

The function getline() is declared in stdio.h. See the man page to read about its ar-
guments. Its third argument is a pointer to a C language file stream; use stdin for this
argument to read from standard input. Note: The program ~cs273/egs/mopen.c includes
example use of getline, as discussed in class notes.

Create a git commit containing your work on this problem.

$ git add echoline.c

$ git commit -m "Step 2 complete: echoline.c"

Lab 2: More on C programming 6

3. (Validating a getline call.) Modify echoline.c if necessary to store the return value of
getline in a variable. Then, make use of that return value to print the number of characters
read, and also to print an appropriate message if an error or the end of input was encountered.
If a nullbyte is encountered in standard input before a newline character, your program should
read and count all characters including nullbytes before that newline. Test all these features.

Note: You can enter an end-of-input at a terminal by entering CTRL/D at the beginning of
a line. You can enter a nullbyte at the terminal (at least on a Link computer) by entering
CTRL/@ (anywhere in a line). Even if your echoline program doesn’t print characters after a
nullbyte, it should print the correct count of characters in the input line including nullbytes.

If you can figure out a way to cause an input error (not an end-of-input) for this testing,
explain how you caused that input error in a file called README in your lab2 directory.

Create a git commit containing your work on this problem.

$ git add echoline.c

$ git commit -m "Step 3 complete: echoline.c"

Include README in the git add command above you have something to commit in that file
README.

4. (Introduction to struct; moving I/O to a function.) Modify echoline.c to define a struct
name with the following fields:

• An array tok of pointers to characters, eventually intended to hold the words (“tokens”)
in an input line. Use the type char** for this field, so we can load it with dynamically
allocated memory later.

• An integer count, eventually intended to hold the number of words encountered in an
input line.

• Another integer status, eventually intended to hold information about the success of a
parsing operation.

Also define a function read name with (the address of) one name struct as its argument, which
will ultimately read a line of input and store its tokens in that name structure. read name

should return an integer (for indicating success or failure).

For now, move your code for reading, checking and echoing an input line into read name,
and change your main to allocate a name struct then call read name with that struct, as a
preliminary step and to get syntax correct. Note that this preliminary verison of read name

will not actually use the struct name at all in this step. Compile and execute the resulting
program to make sure it still operates correctly.

Create a git commit containing your work on this problem.

$ git add echoline.c

$ git commit -m "Step 4 complete: echoline.c"

5. (Allocating an array of pointers with malloc(); using an element of an array of pointers.)
Modify your read name function in echoline.c to dynamically allocate an array of MAXTOKS
pointers to strings and assign that newly allocated memory to the tok field of the name struct

Lab 2: More on C programming 7

pointed to by the argument of read name. Use #define MAXTOKS as a preprocessor constant.
Use sizeof in your computation of how much space to allocate for your array of pointers.

Then, in read name() after your call to getline(), make an assignment causing tok[0]

(first element in the newly allocated array tok within your name struct) to hold the address
of your buffer array used in your getline() call. (Remember you can express the address of
an array by simply writing that array’s name.) Finally, modify your read name function to
echo the value in tok[0] instead of echoing your input buffer (thus, getline still reads into
your input buffer but output uses the value of tok[0] to print that same buffer). Verify that
your program works.

Create a git commit containing your work on this problem.

$ git add echoline.c

$ git commit -m "Step 5 complete: echoline.c"

6. (Enumerated type; using a status field.) Further modify read name to store information
about the success of the input operation in the status field of the name struct. For example,
if end of file (or an error) was encountered before any characters could be read, assign a
constant value EOF OR ERROR to status; otherwise, assign NORMAL to status. Define these
constants using an enumerated type, e.g.,

enum status_value { NORMAL, EOF_OR_ERROR };

Also, have read name return 1 for NORMAL status and 0 for other values of status, to indicate
success or failure.

In read name, eliminate the printed messages indicating validation that were added in Step
3. Then, in main, add similar diagnostics according to the value of the status field of your
name struct. Also, print the return value from read name within main. Test your program,
including tests for end-of-file, lines containing nullbytes, and the normal case.

Create a git commit containing your work on this problem.

$ git add echoline.c

$ git commit -m "Step 6 complete: echoline.c"

7. (Copying first token into a dynamically allocated string.) Now start parsing by storing
only one token from the input line in tok[0] instead of the entire input line, as follows.
In read name, instead of assigning getline()’s buffer to tok[0], write a loop that counts
the number N of characters in that buffer from the beginning of that buffer and until you
encounter a whitespace character (consider the library function isspace, which checks for
spaces, tabs, newlines, etc.) or the end of that buffer. Dynamically allocate a new array
of N + 1 characters (allowing for added nullbyte), assign that dynamically allocated array
to tok[0], then use a second loop to copy the first N characters of getline()’s buffer into
tok[0] and add a nullbyte. In the end, tok[0] should hold a dynamically allocated copy of
the first token in getline()’s buffer, without changing that buffer.

Be sure that your first (counting) loop stops if getline()’s buffer is exhausted before the
first newline (you can detect this by comparing the number of characters counted against the
return value from getline()). Also, be sure to add a nullbyte at the end of your newly-parsed
token. Test the results in main by printing the value of tok[0] in your name struct.

Lab 2: More on C programming 8

Create a git commit containing your work on this problem.

$ git add echoline.c

$ git commit -m "Step 7 complete: echoline.c"

8. (Extracting all the tokens.) Finally, change read name to read all the tokens in a line. This
will require you to enclose both the allocation of tok[i] and the loop for copying tokens within
a larger “tokenizing” loop. If multiple whitespace characters appear between two tokens, be
sure to skip all consecutive whitespace characters between such tokens (this will require an
additional inner loop). You will know to exit from the outer loop when you encounter the
end of your buffer. Store the total number of tokens you encounter in the count field of the
struct name.

Test the results by printing all the parsed tokens in main, one per line, then by printing the last
token followed by a comma and the other tokens (so that the input line Edsger W. Dijkstra

will produce the output Dijkstra, Edsger W.).

Create a git commit containing your work on this problem.

$ git add echoline.c

$ git commit -m "Step 8 complete: echoline.c"

9. (Detecting too many tokens; evolutionary modification of status.) Modify read name()

to detect when there are more than MAXTOKS tokens in input. If this occurs, exit from
your “tokenizing” loop, assign a dynamically allocated copy of the remainder of getline()’s
buffer (containing multiple tokens) to the final location in the array tok[], and assign a value
TOO MANY TOKENS to your status field. You will need to add the name TOO MANY TOKENS to
your enum type. Add detection of this condition in your main. Test this feature by temporarily
changing the value of MAXTOKS to 3, and entering lines with 2, 3, then 4 tokens.

Create a git commit containing your work on this problem.

$ git add echoline.c

$ git commit -m "Step 9 complete: echoline.c"

10. (More improvements.) Make your program robust. Test to insure that your program doesn’t
create any empty tokens, e.g., if someone enters spaces at the beginning or end of an input
line. (You will need to skip spaces before extracting the first token.)

Also, make sure your program behaves correctly when nullbytes are included within an input
line. If a nullbyte appears within a token, your program should copy that nullbyte along with
the other characters of the token (although printf() will only output characters before the
first nullbyte), and any future tokens should also be copied into tok[]. If a nullbyte appears
among consecutive whitespace characters, your program should skip that nullbyte along with
those whitespace characters.

Is there anything else that can go wrong that your program does not address?

Create a git commit containing your work on this problem.

$ git add echoline.c

$ git commit -m "Step 10 complete: echoline.c"

Lab 2: More on C programming 9

Deliverables

Use stogit to submit your work for this lab. Assuming you have committed your work as above,
enter

% git commit --amend
% git pull origin master
% git push origin master

If your lab is complete, your amended should be lab2: complete. Use an appropriate message
for your commit if your lab isn’t yet complete. (You can make a partial submission at any time,
then perform the same add/commit/pull/push cycle to resubmit more complete versions later.)

You can examine the results of your push operation by browsing to stogit.cs.stolaf.edu,
logging in (with your St. Olaf password), clicking on a link for your repository (e.g., OS/F20/rab),
and browsing using the Files option in the upper menu bar.

