
1

Pointers and const types
CS 251 Revision 1.9

* (dereference operator)
1 Argument: An r-value of a pointer type T *.
State change: None.
Return: The location of type T whose address is arg1. (This return

value may be used as either an l-value or an r-value.)

& (address operator)
1 Argument: An l-value of any type T.
State change: None.
Return: An r-value of type T * that is the address of arg1.

Three meanings for * in C++

• Multiplication operator, e.g., i = 6*x;.

• Pointer type name, e.g., char * str;

• Dereferencing operator, e.g., *ptr where ptr is a variable of pointer type.

Three meanings for & in C++

• Binary AND operator, e.g., i = 2&x; (copies the next-to-last bit of x).

• Reference type name, e.g., char &str;

• Address operator, e.g., &x where x is a variable.

(Also: && is the logical AND operator, e.g., x < 3 && y == 2

Four meanings for const in C++

• In a variable definition: The value in that memory location may not be changed using
that variable name. Example:

const float pi = 3.14159;

pi = 3.14159265; /* ERROR: pi has type const float, so value of pi may not be changed! */

• In a pointer or reference argument type: The value(s) pointed to/referred to may not
be changed using that argument name. Example:

int strmod(const char * str) {

str[0] = ’x’; /* ERROR: str has type const char *, so the

characters that str points to may not be changed! */

}

2

• In a return value type: The returned location’s value may not be changed using that
return value. Example:

const char * second(const char *str) { return &str[1]; }

char *chptr;

chptr = second("hello"); /* ERROR: the return value for second() has type

const char *, so that return value may not be

changed; but chptr does not have a const type! */

• const method: the method is safe to call for const objects. Example:

class Dog {

protected:

char *name;

int age;

public:

char get initial(void) const { return name[0]; }

void birthday() { age++; }

...

};

int main() {

const Dog fido("Fido", 3);

char ch = fido.get initial(); // no error: get initial is a const method

fido.birthday(); /* ERROR because fido is a const object and

birthday is not a const method */

}

